Answer:
1)Reject H_o if t> 2.998
2) t = 2.8594
3) No, conclusion about positive association in population is not reasonable
Step-by-step explanation:
To Test [tex]H_o : \rho = 0 vs H_1:\rho>0[/tex]
we know that Test statics is
[tex]t = \frac{r\sqrt{n-2}}{\sqrt{1- r^2}} \sim t_{n-2}[/tex]
1) Reject H_o if[tex] t > t_{n-2}\alpha[/tex]
n = 9, [tex]\alpha = 0.010[/tex]
[tex]t_7(0.010) = 2.998[/tex]
Reject H_o if t> 2.998
2) [tex]t = \frac{r\sqrt{n-2}}{\sqrt{1- r^2}}[/tex]
n = 9 r = 0.734
so we have t = 2.8594
3) t = 2.8594
therefore [tex]t < t_7(0.010) = 2.998[/tex], hence we accept hypothesis or H_o
No, conclusion about positive association in population is not reasonable