Respuesta :
Answer:
Proton: v=0.689 m/s
Neutron: v=0.688 m/s
Electron: v=1265.078 m/s
Alpha particle: v=0.173 m/s
Explanation:
De Broglie equation allows you to calculate the “wavelength” of an electron or any other particle or object of mass m that moves with velocity v:
λ=[tex]\frac{h}{mv}[/tex]
h is the Planck constant: 6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]
We know that the wavelength of the particle is 575 nm (575×10⁻⁹m), so we find the velocity v for each particle:
λ=[tex]\frac{h}{mv}[/tex]
v=h÷(mλ)
Proton:
m=1.673×10⁻²⁴ g · [tex]\frac{1kg}{1000g}[/tex]=1.673×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(1.673×10⁻²⁷ kg×575×10⁻⁹m)
v=0.689 m/s
Neutron:
m=1.675×10⁻²⁴ g · [tex]\frac{1kg}{1000g}[/tex]=1.675×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(1.675×10⁻²⁷ kg×575×10⁻⁹m)
v=0.688 m/s
Electron:
m= 9.109×10⁻²⁸ g · [tex]\frac{1kg}{1000g}[/tex]=9.109×10⁻³¹ kg
v=h÷(mλ)
v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(9.109×10⁻³¹ kg×575×10⁻⁹m)
v=1265.078 m/s
Alpha particle:
m=6.645×10⁻²⁴ g · [tex]\frac{1kg}{1000g}[/tex]=6.645×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(6.645×10⁻²⁷ kg×575×10⁻⁹m)
v=0.173 m/s
Speed of Proton is about 0.6892 m/s
Speed of Neutron is about 0.6884 m/s
Speed of Electron is about 1266 m/s
Speed of Alpha particle is about 0.1735 m/s
[tex]\texttt{ }[/tex]
Further explanation
The term of package of electromagnetic wave radiation energy was first introduced by Max Planck. He termed it with photons with the magnitude is :
[tex]\large {\boxed {E = h \times f}}[/tex]
where:
E = Energi of A Photon ( Joule )
h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )
f = Frequency of Eletromagnetic Wave ( Hz )
[tex]\texttt{ }[/tex]
Let's recall De Broglie's Wavelength Formula as follows:
[tex]\boxed{\lambda = \frac{h}{mv}}[/tex]
where:
λ = wavelength ( m )
h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )
m = mass of object ( kg )
v = velocity of object ( m/s )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
wavelength of yellow light = λ = 575.0 nm = 5.75 × 10⁻⁷ m
mass of proton = m₁ = 1.673 × 10⁻²⁴ g = 1.673 × 10⁻²⁷ kg
mass of neutron = m₂ = 1.675 × 10⁻²⁴ g = 1.675 × 10⁻²⁷ kg
mass of electron = m₃ = 9.109 × 10⁻²⁸ g = 9.109 × 10⁻³¹ kg
mass of alpha particle = m₄ = 6.645 × 10⁻²⁴ g = 6.645 × 10⁻²⁷ kg
Asked:
speed of each particle = v = ?
Solution:
We will use the formula of The Broglie's Wavelength:
[tex]\lambda = \frac{h}{mv}[/tex]
[tex]\boxed{v = \frac{h}{m \lambda}}[/tex]
[tex]\texttt{ }[/tex]
Proton:
[tex]v_1 = \frac{h}{m_1 \lambda}[/tex]
[tex]v_1 = \frac{6.63 \times 10^{-34}}{1.673 \times 10^{-27} \times 5.75 \times 10^{-7}}[/tex]
[tex]v_1 \approx 0.6892 \texttt{ m/s}[/tex]
[tex]\texttt{ }[/tex]
Neutron:
[tex]v_2 = \frac{h}{m_2 \lambda}[/tex]
[tex]v_2 = \frac{6.63 \times 10^{-34}}{1.675 \times 10^{-27} \times 5.75 \times 10^{-7}}[/tex]
[tex]v_2 \approx 0.6884 \texttt{ m/s}[/tex]
[tex]\texttt{ }[/tex]
Electron:
[tex]v_3 = \frac{h}{m_3 \lambda}[/tex]
[tex]v_3 = \frac{6.63 \times 10^{-34}}{9.109 \times 10^{-31} \times 5.75 \times 10^{-7}}[/tex]
[tex]v_3 \approx 1266 \texttt{ m/s}[/tex]
[tex]\texttt{ }[/tex]
Alpha particle:
[tex]v_4 = \frac{h}{m_4 \lambda}[/tex]
[tex]v_4 = \frac{6.63 \times 10^{-34}}{6.645 \times 10^{-27} \times 5.75 \times 10^{-7}}[/tex]
[tex]v_4 \approx 0.1735 \texttt{ m/s}[/tex]
[tex]\texttt{ }[/tex]
Learn more
- Photoelectric Effect : https://brainly.com/question/1408276
- Statements about the Photoelectric Effect : https://brainly.com/question/9260704
- Rutherford model and Photoelecric Effect : https://brainly.com/question/1458544
[tex]\texttt{ }[/tex]
Answer details
Grade: College
Subject: Physics
Chapter: Quantum Physics
![Ver imagen johanrusli](https://us-static.z-dn.net/files/ded/1aaef934de786d1f456e3d2e921b0242.png)