contestada

What would the speed of each particle be if it had the same wavelength as a photon of yellow light (????=575.0 nm)? Proton (mass=1.673 x 10^−24 g) Neutron (mass = 1.675 x 10–24 g)Electron (mass = 9.109 x 10^–28 g)Alpha particle (mass = 6.645 x 10^–24 g)

Respuesta :

Answer:

Proton: v=0.689 m/s

Neutron: v=0.688 m/s

Electron: v=1265.078 m/s

Alpha particle: v=0.173 m/s

Explanation:

De Broglie equation allows you to calculate the “wavelength” of an electron or any other particle or object of mass m that moves with velocity v:

λ=[tex]\frac{h}{mv}[/tex]

h is the Planck constant: 6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]

We know that the wavelength of the particle is 575 nm (575×10⁻⁹m), so we find the velocity v for each particle:

λ=[tex]\frac{h}{mv}[/tex]

v=h÷(mλ)

Proton:

m=1.673×10⁻²⁴ g · [tex]\frac{1kg}{1000g}[/tex]=1.673×10⁻²⁷ kg

v=h÷(mλ)

v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(1.673×10⁻²⁷ kg×575×10⁻⁹m)

v=0.689 m/s

Neutron:

m=1.675×10⁻²⁴ g · [tex]\frac{1kg}{1000g}[/tex]=1.675×10⁻²⁷ kg

v=h÷(mλ)

v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(1.675×10⁻²⁷ kg×575×10⁻⁹m)

v=0.688 m/s

Electron:

m= 9.109×10⁻²⁸ g · [tex]\frac{1kg}{1000g}[/tex]=9.109×10⁻³¹ kg

v=h÷(mλ)

v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(9.109×10⁻³¹ kg×575×10⁻⁹m)

v=1265.078 m/s

Alpha particle:

m=6.645×10⁻²⁴ g · [tex]\frac{1kg}{1000g}[/tex]=6.645×10⁻²⁷ kg

v=h÷(mλ)

v=6.626×10⁻³⁴[tex]\frac{kg.m^2}{s}[/tex]÷(6.645×10⁻²⁷ kg×575×10⁻⁹m)

v=0.173 m/s

Speed of Proton is about 0.6892 m/s

Speed of Neutron is about 0.6884 m/s

Speed of Electron is about 1266 m/s

Speed of Alpha particle is about 0.1735 m/s

[tex]\texttt{ }[/tex]

Further explanation

The term of package of electromagnetic wave radiation energy was first introduced by Max Planck. He termed it with photons with the magnitude is :

[tex]\large {\boxed {E = h \times f}}[/tex]

where:

E = Energi of A Photon ( Joule )

h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )

f = Frequency of Eletromagnetic Wave ( Hz )

[tex]\texttt{ }[/tex]

Let's recall De Broglie's Wavelength Formula as follows:

[tex]\boxed{\lambda = \frac{h}{mv}}[/tex]

where:

λ = wavelength ( m )

h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )

m = mass of object ( kg )

v = velocity of object ( m/s )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

wavelength of yellow light = λ = 575.0 nm = 5.75 × 10⁻⁷ m

mass of proton = m₁ = 1.673 × 10⁻²⁴ g = 1.673 × 10⁻²⁷ kg

mass of neutron = m₂ = 1.675 × 10⁻²⁴ g = 1.675 × 10⁻²⁷ kg

mass of electron = m₃ = 9.109 × 10⁻²⁸ g = 9.109 × 10⁻³¹ kg

mass of alpha particle = m₄ = 6.645 × 10⁻²⁴ g = 6.645 × 10⁻²⁷ kg

Asked:

speed of each particle = v = ?

Solution:

We will use the formula of The Broglie's Wavelength:

[tex]\lambda = \frac{h}{mv}[/tex]

[tex]\boxed{v = \frac{h}{m \lambda}}[/tex]

[tex]\texttt{ }[/tex]

Proton:

[tex]v_1 = \frac{h}{m_1 \lambda}[/tex]

[tex]v_1 = \frac{6.63 \times 10^{-34}}{1.673 \times 10^{-27} \times 5.75 \times 10^{-7}}[/tex]

[tex]v_1 \approx 0.6892 \texttt{ m/s}[/tex]

[tex]\texttt{ }[/tex]

Neutron:

[tex]v_2 = \frac{h}{m_2 \lambda}[/tex]

[tex]v_2 = \frac{6.63 \times 10^{-34}}{1.675 \times 10^{-27} \times 5.75 \times 10^{-7}}[/tex]

[tex]v_2 \approx 0.6884 \texttt{ m/s}[/tex]

[tex]\texttt{ }[/tex]

Electron:

[tex]v_3 = \frac{h}{m_3 \lambda}[/tex]

[tex]v_3 = \frac{6.63 \times 10^{-34}}{9.109 \times 10^{-31} \times 5.75 \times 10^{-7}}[/tex]

[tex]v_3 \approx 1266 \texttt{ m/s}[/tex]

[tex]\texttt{ }[/tex]

Alpha particle:

[tex]v_4 = \frac{h}{m_4 \lambda}[/tex]

[tex]v_4 = \frac{6.63 \times 10^{-34}}{6.645 \times 10^{-27} \times 5.75 \times 10^{-7}}[/tex]

[tex]v_4 \approx 0.1735 \texttt{ m/s}[/tex]

[tex]\texttt{ }[/tex]

Learn more

  • Photoelectric Effect : https://brainly.com/question/1408276
  • Statements about the Photoelectric Effect : https://brainly.com/question/9260704
  • Rutherford model and Photoelecric Effect : https://brainly.com/question/1458544

[tex]\texttt{ }[/tex]

Answer details

Grade: College

Subject: Physics

Chapter: Quantum Physics

Ver imagen johanrusli
ACCESS MORE