Answer:
Explanation:
given,
plate area = 5.40 cm²
separation = 4.30 mm
Capacitance = [tex]\dfrac{\epsilon A}{d}[/tex]
= [tex]\dfrac{8.85\times 10^{-12}\times 5.4\times 10^{-4}}{4.3 \times 10^{-3}}[/tex]
=[tex]1.11 \times 10^{-12} F[/tex]
Potential difference applied = 4.6 V
charge stored in the capacitor = [tex]4.6 \times 1.11 \times 10^{-12}[/tex]
=[tex]5.106 \times 10^{-12}[/tex]
Now when plates are moved new capacitance
Capacitance = [tex]\dfrac{\epsilon A}{d}[/tex]
= [tex]\dfrac{8.85\times 10^{-12}\times 5.4\times 10^{-4}}{8.10 \times 10^{-3}}[/tex]
=[tex]0.59 \times 10^{-12} F[/tex]
voltage =[tex]\dfrac{5.106 \times 10^{-12}}{0.59 \times 10^{-12}}[/tex]
potential applied = 8.65 V
Initial energy stored =[tex]\dfrac{1}{2}C_1V^2[/tex]
=[tex]\dfrac{1}{2}\times 1.11 \times 10^{-12} 4.6^2[/tex]
= [tex]1.174\times 10^{-11} J[/tex]
Final energy stored =[tex]\dfrac{1}{2}C_1V^2[/tex]
=[tex]\dfrac{1}{2}\times 0.59 \times 10^{-12} 8.65^2[/tex]
=[tex]2.21\times 10^{-11} J[/tex]
Work done = final energy - initial energy
= [tex]2.21\times 10^{-11} - 1.174\times 10^{-11}[/tex]
= [tex]1.036\times 10^{-11}[/tex]