Respuesta :
Answer:
[tex]a_{cA} = 6.075[/tex] m/s²
[tex]a_{cB} = 6.075[/tex] m/s²
[tex]F_{cA} = 6682.5 N[/tex]
[tex]F_{cB} = 9720 N[/tex]
Explanation:
Normal or centripetal acceleration measures change in speed direction over time. Its expression is given by:
[tex]a_{c} = \frac{v^{2} }{r}[/tex] Formula 1
Where:
[tex]a_{c}[/tex] : Is the normal or centripetal acceleration of the body ( m/s²)
v: It is the magnitude of the tangential velocity of the body at the given point
.(m/s)
r: It is the radius of curvature. (m)
Newton's second law:
∑F = m*a Formula ( 2)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
Data
[tex]v_{A} = 27 \frac{m}{s}[/tex]
[tex]v_{B} = 27 \frac{m}{s}[/tex]
[tex]m_{A} = 1100 kg[/tex]
[tex]m_{B} = 1600 kg[/tex]
r= 120 m
Problem development
We replace data in formula (1) to calculate centripetal acceleration:
[tex]a_{cA} = \frac{(27)^{2} }{120}[/tex]
[tex]a_{cA} = 6.075[/tex] m/s²
[tex]a_{cB} = \frac{(27)^{2} }{120}[/tex]
[tex]a_{cB} = 6.075[/tex] m/s²
We replace data in formula (2) to calculate centripetal force Fc) :
[tex]F_{cA} = m_{A} *a_{cA} = 1100kg*6.075\frac{m}{s^{2} }[/tex]
[tex]F_{cA} = 6682.5 N[/tex]
[tex]F_{cB} = m_{B} *a_{cB} = 1600kg*6.075\frac{m}{s^{2} }[/tex]
[tex]F_{cB} = 9720 N[/tex]