contestada

Two cars are traveling at the same speed of 27 m/s on a curve thathas a radius of 120 m. Car A has a mass of 1100 kg and car B has amass of 1600 kg. Find the centripetal acceleration and thecentripetal force for each car.

Respuesta :

Answer:

[tex]a_{cA} = 6.075[/tex]  m/s²

[tex]a_{cB} = 6.075[/tex]  m/s²

[tex]F_{cA} = 6682.5 N[/tex]

[tex]F_{cB} = 9720 N[/tex]

Explanation:

Normal or centripetal acceleration measures change in speed direction over time. Its expression is given by:

[tex]a_{c} = \frac{v^{2} }{r}[/tex]  Formula 1

Where:

[tex]a_{c}[/tex] : Is the normal or centripetal acceleration of the body  ( m/s²)

v: It is the magnitude of the tangential velocity of the body at the given point

.(m/s)

r: It is the radius of curvature. (m)

Newton's second law:

∑F = m*a Formula ( 2)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

Data

[tex]v_{A} = 27 \frac{m}{s}[/tex]

[tex]v_{B} = 27 \frac{m}{s}[/tex]

[tex]m_{A} = 1100 kg[/tex]

[tex]m_{B} = 1600 kg[/tex]

r= 120 m

Problem development

We replace data in formula (1) to calculate centripetal acceleration:

[tex]a_{cA} = \frac{(27)^{2} }{120}[/tex]

[tex]a_{cA} = 6.075[/tex]  m/s²

[tex]a_{cB} = \frac{(27)^{2} }{120}[/tex]

[tex]a_{cB} = 6.075[/tex]  m/s²

We replace data in formula (2) to calculate  centripetal  force Fc) :

[tex]F_{cA} = m_{A} *a_{cA} = 1100kg*6.075\frac{m}{s^{2} }[/tex]

[tex]F_{cA} = 6682.5 N[/tex]

[tex]F_{cB} = m_{B} *a_{cB} = 1600kg*6.075\frac{m}{s^{2} }[/tex]

[tex]F_{cB} = 9720 N[/tex]

ACCESS MORE