Let the universal set U = {a, b, c, d} with sets A = {a, b} and B = {b, c}. Find the set A ∪ BC.Which of the sets below are disjoint to this set? (Select all that apply.)[Hint: For each of the sets below, find the elements of the set and compare to the set A ∪ BC in order to determine if they are disjoint.]a) A ∩ Bb) A ∩ B^Cc) A^C ∩ Bd) A ∪ Be) A ∪ B^Cf) A^C ∪ Bg) A^C ∩ B^Ch) A^C ∪ B^Ci) None are disjoint

Respuesta :

Answer:

[tex]A^c\cap B[/tex]

Step-by-step explanation:

Given,

U = {a, b, c, d}, A = {a, b} and B = {b, c},

[tex]A^c=U-A=\{c, d\}[/tex]

[tex]B^c=U-B = \{ a, d\}[/tex]

Thus,

[tex]A\cup B^c=\{a, b, d\}[/tex]

[tex]A\cap B = \{b\}[/tex]

[tex]A\cap B^c = \{a\}[/tex]

[tex]A^c\cap B = \{c\}[/tex]

[tex]A\cup B = \{a, b, c, d\}[/tex]

[tex]A^c\cup B = \{b, c, d\}[/tex]

[tex]A^c\cap B^c = \{d\}[/tex]

Now, two sets are called disjoint if there intersection is ∅,

By the above explanation it is clear that,

[tex](A\cup B^c)\cap (A^c\cap B) = \phi[/tex]

Hence, [tex] (A^c\cap B)[/tex] is disjoint to [tex](A\cap B^c)[/tex]