Answer:
[tex]T_s=T_\infty +\dfrac{Q_or_o}{4h}[/tex]
Explanation:
Heat generated per unit volume
[tex]Q_{gen}=Qo\left [{1-\dfrac{r^2}{r_o^2}}\right][/tex]
Total heat generation through the volume
Eg= Q(gen) .dV
[tex]E_g=\int_{0}^{r_o}Qo\left [{1-\dfrac{r^2}{r_o^2}}\right]\ 2\pi rLdr[/tex]
[tex]E_g=2\pi LQ_o\int_{0}^{r_o}\left [{r-\dfrac{r^3}{r_o^2}}\right]dr[/tex]
[tex]E_g=2\pi LQ_o\left [\dfrac{r^2}{2}-\dfrac{r^4}{4r_o^2}\right]^{r_0}_0[/tex]
[tex]E_g=\dfrac{1}{2}Q_0\pi L\ r_0^2[/tex] -------1
Heat transfer due to convection
q= h A (Ts- T ∞) ----------2
By equating equation 1 and 2
[tex]h 2\pi r_0 L(T_s-T_\infty ) =\dfrac{1}{2}Q_0\pi L\ r_0^2[/tex]
[tex]T_s=T_\infty +\dfrac{Q_or_o}{4h}[/tex]