Answer:
Vf = 4.40 m/s and θ = 88º
Explanation:
To solve this problem, let's look for the resultants of the force and with this we calculate the accelerations in each axis.
Let's use trigonometry to break down the forces
Sin 25 = F1x / F1
Cos 25 = F1y / F1
Fix = F1 sin 25
F1x = 1.85 sin 25
F1x = 0.78 N
F1y = 1.85 cos 25
F1y = 1.67 N
F2 = - 0.782 N j ^ (south)
F3 = - 0.750 N i ^ (west)
We write Newton's second law
X axis (East-West)
F1x - F3 = m ax
ax = (F1x - F3) / m
ax = (0.78 - (0.750)) / 0.325
ax = 0.092 m / s²
Y axis (North-South)
F1y - F2 = m ay
ay = (1.67- (0.782)) / 0.325
ay = 2.73 m / s²
Let's calculate the magnitude and direction of the acceleration
a = RA ax2 + ay2
a = RA 0.092² + 2.73²
a = 2.73m / s²
tan θ = ay / ax
θ = tan⁻¹ (2.73/0.092)
θ = tan⁻¹ 29.67
θ = 88º
We calculate the speed, notice that we use the total acceleration to be able to use the totol displacement
Vf² = vo² + 2 at D
Vf² = 0 + 2 2.73 3.55
Vf = √ 19.38
Vf = 4.40 m / s
θ = 88º