contestada

A stone with a mass of 0.700kg is attached to one end of a string 0.600m long. The string will break if its tension exceeds 65.0N . The stone is whirled in a horizontal circle on a frictionless tabletop; the other end of the string remains fixed.
Find the maximum speed the stone can attain without breaking the string? m/s

Respuesta :

Answer:v=7.46 m/s

Explanation:

Given

mass of stone=0.7 kg

Length of string=0.6 m

Maximum tension in string T=65 N

Tension will Provide centripetal force i.e. [tex]\frac{mv^2}{r}[/tex]

[tex]T=\frac{mv^2}{r}[/tex]

[tex]65=\frac{0.7\times v^2}{0.6}[/tex]

[tex]65\times 0.6=0.7\times v^2[/tex]

[tex]v^2=\frac{65\times 0.6}{0.7}[/tex]

[tex]v^2=55.71[/tex]

[tex]v=\sqrt{55.71}=7.46 m/s[/tex]

The maximum speed that the stone can attain without breaking the string is  7.46 m/s.

How to calculate maximum velocity from Tension?

The tension of the string is equal to the centripetal force. It can be represented as,

[tex]T = F_c[/tex]

[tex]T = \dfrac {mv^2}{R}[/tex]

Where,

[tex]T[/tex] - tension = 65 N

[tex]m[/tex] - mass  = 0.7 g

[tex]v[/tex] -velocity = ?

[tex]R[/tex] - Radius = 0.6 m

Put the values in the formula and calculate for [tex]v[/tex],

[tex]65 = \dfrac {0.7 \times v^2}{0.6}[/tex]

[tex]v = \sqrt {65\times 0.6}{0.7}[/tex]

[tex]v = 7.46 \rm \ m/s[/tex]

Therefore, the maximum speed that the stone can attain without breaking the string is  7.46 m/s.

Learn more about maximum speed:

https://brainly.com/question/2159828

ACCESS MORE