Respuesta :
Answer:v=7.46 m/s
Explanation:
Given
mass of stone=0.7 kg
Length of string=0.6 m
Maximum tension in string T=65 N
Tension will Provide centripetal force i.e. [tex]\frac{mv^2}{r}[/tex]
[tex]T=\frac{mv^2}{r}[/tex]
[tex]65=\frac{0.7\times v^2}{0.6}[/tex]
[tex]65\times 0.6=0.7\times v^2[/tex]
[tex]v^2=\frac{65\times 0.6}{0.7}[/tex]
[tex]v^2=55.71[/tex]
[tex]v=\sqrt{55.71}=7.46 m/s[/tex]
The maximum speed that the stone can attain without breaking the string is 7.46 m/s.
How to calculate maximum velocity from Tension?
The tension of the string is equal to the centripetal force. It can be represented as,
[tex]T = F_c[/tex]
[tex]T = \dfrac {mv^2}{R}[/tex]
Where,
[tex]T[/tex] - tension = 65 N
[tex]m[/tex] - mass = 0.7 g
[tex]v[/tex] -velocity = ?
[tex]R[/tex] - Radius = 0.6 m
Put the values in the formula and calculate for [tex]v[/tex],
[tex]65 = \dfrac {0.7 \times v^2}{0.6}[/tex]
[tex]v = \sqrt {65\times 0.6}{0.7}[/tex]
[tex]v = 7.46 \rm \ m/s[/tex]
Therefore, the maximum speed that the stone can attain without breaking the string is 7.46 m/s.
Learn more about maximum speed:
https://brainly.com/question/2159828