Answer:
Mean = 339 hours
Standard deviation = 54 hours
Step-by-step explanation:
We are given that approximately 2.5% of the bulbs have lives exceeding 445 hours
So,P(x>445) = 0.025
P(x<445) =1- 0.025 =0.975
z value for 0.975 is 1.96
Formula : [tex]z=\frac{x-\mu}{\sigma}[/tex]
So, [tex]1.96=\frac{445-\mu}{\sigma}[/tex]
[tex]1.96 \sigma =445-\mu[/tex]--A
Now we are given that approximately 16% have lives exceeding 393 hours,
So,P(x>393) = 0.16
P(x<393) =1- 0.16 =0.84
z value for 0.84 is 1
Formula : [tex]z=\frac{x-\mu}{\sigma}[/tex]
So, [tex]1=\frac{393-\mu}{\sigma}[/tex]
[tex]1 \sigma =393-\mu[/tex] ---B
Solve A and B
Substitute the value of [tex]\sigma[/tex]from B in A
[tex]1.96 (393 -\mu) =445-\mu[/tex]
[tex]770.28 -1.96\mu=445-\mu[/tex]
[tex]770.28 -445=1.96\mu-\mu[/tex]
[tex]325.28=0.96\mu[/tex]
[tex]\frac{325.28}{0.96}=\mu[/tex]
[tex]338.83=\mu[/tex]
Substitute the value in B
[tex]\sigma =393-338.83[/tex]
[tex]\sigma =54.17[/tex]
So, mean = 339 hours
Standard deviation = 54 hours