A hollow spherical shell with mass 1.95 kg rolls without slipping down a slope that makes an angle of 39.0 ∘ with the horizontal. Find the minimum coefficient of friction μ needed to prevent the spherical shell from slipping as it rolls down the slope.

Respuesta :

Answer:0.323

Explanation:

mass of spherical shell=1.95 kg

inclination [tex]\theta =39^{\circ}[/tex]

Friction[tex](f_r)[/tex] will oppose the motion of shell

[tex]mgsin\theta -f_r=ma[/tex]

where a=acceleration

a is given by

[tex]a=\frac{gsin\theta }{1+\frac{I}{mr^2}}[/tex]

I=moment of inertia [tex]=\fac{2mr^2}{3}[/tex]

[tex]a=\frac{3gsin\theta }{5}[/tex]

[tex]f_r=mg\sin \theta -\frac{3mgsin\theta }{5}[/tex]

[tex]f_r=\frac{2mgsin\theta }{5}[/tex]

and [tex]f_r=\mu N[/tex]

[tex]f_r=\mu mg\cos \theta [/tex]

[tex]\mu mg\cos \theta =\frac{2mgsin\theta }{5}[/tex]

[tex]\mu =\frac{2}{5}\times \tan \theta [/tex]

[tex]\mu =0.323[/tex]

ACCESS MORE