7. NH2CO2NH4(s) when heated to 450 K undergoes the following reaction to produce a system which reaches equilibrium: NH2CO2NH4(s) ⇀↽ 2 NH3(g) + CO2(g) The total pressure in the closed container under these condition is found to be 0.843 atm. Calculate a value for the equilibrium constant, Kp. A) 0.00701 B) 0.0888 C) 0.222 D) 0.599

Respuesta :

Answer:

Value of equilibrium constant is 0.0888

Explanation:

Both [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] are gaseous. Hence equilibrium constant depends upon partial pressures of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex].

Initially no [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] were present.

Hence mole fraction of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] at equilibrium can be calculated from coefficient of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] in balanced equation.

Mole fraction of [tex]NH_{3}[/tex] = (number of moles of [tex]NH_{3}[/tex])/(total number of moles of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex]) = [tex]\frac{2moles}{(2+1)moles}=\frac{2}{3}[/tex]

Mole fraction of [tex]CO_{2}[/tex] = (number of moles of [tex]CO_{2}[/tex])/(total number of moles of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex]) = [tex]\frac{1moles}{(2+1)moles}=\frac{1}{3}[/tex]

Let's assume both [tex]CO_{2}[/tex] and [tex]NH_{3}[/tex] behaves ideally.

Therefore partial pressure of [tex]NH_{3}[/tex], [tex]P_{NH_{3}}= x_{NH_{3}}.P_{total}[/tex] and P_{CO_{2}}= x_{CO_{2}}.P_{total}

Where x represents mole fraction

So, [tex]P_{NH_{3}}=\frac{2}{3}\times 0.843atm=0.562atm[/tex]

[tex]P_{CO_{2}}=\frac{1}{3}\times 0.843atm=0.281atm[/tex]

So, [tex]K_{p}=P_{NH_{3}}^{2}.P_{CO_{2}}=(0.562)^{2}\times 0.281=0.0888[/tex]

ACCESS MORE