Answer:
Value of equilibrium constant is 0.0888
Explanation:
Both [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] are gaseous. Hence equilibrium constant depends upon partial pressures of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex].
Initially no [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] were present.
Hence mole fraction of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] at equilibrium can be calculated from coefficient of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex] in balanced equation.
Mole fraction of [tex]NH_{3}[/tex] = (number of moles of [tex]NH_{3}[/tex])/(total number of moles of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex]) = [tex]\frac{2moles}{(2+1)moles}=\frac{2}{3}[/tex]
Mole fraction of [tex]CO_{2}[/tex] = (number of moles of [tex]CO_{2}[/tex])/(total number of moles of [tex]NH_{3}[/tex] and [tex]CO_{2}[/tex]) = [tex]\frac{1moles}{(2+1)moles}=\frac{1}{3}[/tex]
Let's assume both [tex]CO_{2}[/tex] and [tex]NH_{3}[/tex] behaves ideally.
Therefore partial pressure of [tex]NH_{3}[/tex], [tex]P_{NH_{3}}= x_{NH_{3}}.P_{total}[/tex] and P_{CO_{2}}= x_{CO_{2}}.P_{total}
Where x represents mole fraction
So, [tex]P_{NH_{3}}=\frac{2}{3}\times 0.843atm=0.562atm[/tex]
[tex]P_{CO_{2}}=\frac{1}{3}\times 0.843atm=0.281atm[/tex]
So, [tex]K_{p}=P_{NH_{3}}^{2}.P_{CO_{2}}=(0.562)^{2}\times 0.281=0.0888[/tex]