Answer:
Step-by-step explanation:
given E(p) = 0.32
random sample size n =540
a.) sample distribution=
standad deviation of p[tex]\sqrt{\frac{p(1-p}{n} } =\sqrt{\frac{0.32(1-0.32}{540} } =0.0201[/tex]
b.) [tex]z=\frac{p^{i}-p_{0} }{\sqrt{\frac{p_{0}(1-p_{0})}{n} } } \\\\\\\frac{0.32-0.08}{\sqrt{\frac{0.08*0.92}{540} } }=20.51\\[/tex]
probability = 0.9999
c.) n = 230
E(p) = 0.32
[tex]\sqrt{\frac{p(1-p}{n} } =\sqrt{\frac{0.32*0.68}{230} } =0.0308[/tex]
d.) [tex]z=\frac{p^{i}-p_{0} }{\sqrt{\frac{p_{0}(1-p_{0})}{n} } } \\\\\\\frac{0.32-0.08}{\sqrt{\frac{0.08*0.92}{230} } }=13.41\\[/tex]
probability = 0.9999
e.) 20.51-13.41=7.1
reduced by 7.1 and have gained in precision by increasing the sample.