Respuesta :

L=35 and w=15 see attached picture for steps
Ver imagen mindyyyy

Answer:

The dimensions of the rectangular garden: Width = 15 feet and Length = 35 feet.

Solution:

Let the width of the rectangular garden be ‘b’ ft . Then the length of the rectangular garden is ‘b+20’ width.

In the question it is given that the area of the rectangular garden is 525 ft.

We know,

[tex]Area of rectangle = length\times width[/tex]

[tex]\Rightarrow525 = (b+20)\times b[/tex]

[tex]\Rightarrow525 = b^2+20b[/tex]

[tex]\Rightarrow b^2+20b - 525 = 0[/tex]

[tex]\Rightarrow b^2+35b - 15b -525 =  0[/tex]

On taking the common terms out we get,

[tex]\Rightarrow b(b+35)-15(b+35) = 0[/tex]

[tex]\Rightarrow(b-15)(b+35) = 0[/tex]

Therefore, Either [tex](b-15) = 0[/tex] or [tex](b+35) = 0[/tex]

[tex]b=+15[/tex] or [tex]b=-35[/tex]

Taking the positive value of b i.e. b= 15 we get width of the rectangular field to be 15 feet and the length of the rectangular garden to be [tex](b + 20) = 15+20 = 35 feet.[/tex]

ACCESS MORE