Respuesta :
Answer:
The dimensions of the rectangular garden: Width = 15 feet and Length = 35 feet.
Solution:
Let the width of the rectangular garden be ‘b’ ft . Then the length of the rectangular garden is ‘b+20’ width.
In the question it is given that the area of the rectangular garden is 525 ft.
We know,
[tex]Area of rectangle = length\times width[/tex]
[tex]\Rightarrow525 = (b+20)\times b[/tex]
[tex]\Rightarrow525 = b^2+20b[/tex]
[tex]\Rightarrow b^2+20b - 525 = 0[/tex]
[tex]\Rightarrow b^2+35b - 15b -525 = 0[/tex]
On taking the common terms out we get,
[tex]\Rightarrow b(b+35)-15(b+35) = 0[/tex]
[tex]\Rightarrow(b-15)(b+35) = 0[/tex]
Therefore, Either [tex](b-15) = 0[/tex] or [tex](b+35) = 0[/tex]
[tex]b=+15[/tex] or [tex]b=-35[/tex]
Taking the positive value of b i.e. b= 15 we get width of the rectangular field to be 15 feet and the length of the rectangular garden to be [tex](b + 20) = 15+20 = 35 feet.[/tex]