Answer:
The proof is in the explanation
Explanation:
[tex]f(n)[/tex] is [tex]O(n^{3})[/tex] if [tex]f(n) \leq cn^{3}[/tex] for [tex]n \geq n_{0}[/tex].
So, basically, we have to solve the following inequality
[tex]f(n) \leq cn^{3}[/tex]
[tex]20n^{3} + 10n\log{n} + 5 \leq cn^{3}[/tex]
Dividing everything by [tex]n^{3}[/tex] to simplify, we have
[tex]20 + \frac{10\log{n}}{n^{2}} + \frac{5}{n^{3}} \leq cn^{3}[/tex]
I am going to use [tex]n = n_{0} = 1[/tex]. So
[tex]20 + 5 \leq c[/tex]
[tex]c \geq 25[/tex]
There is a solution for the inequality, which proves that [tex]f(n) = 20n^{3} + 10n\log{n} + 5[/tex] is [tex]O(n^{3})[/tex]