Respuesta :

Answer:

The proof is in the explanation

Explanation:

[tex]f(n)[/tex] is [tex]O(n^{3})[/tex] if [tex]f(n) \leq cn^{3}[/tex] for [tex]n \geq n_{0}[/tex].

So, basically, we have to solve the following inequality

[tex]f(n) \leq cn^{3}[/tex]

[tex]20n^{3} + 10n\log{n} + 5 \leq cn^{3}[/tex]

Dividing everything by [tex]n^{3}[/tex] to simplify, we have

[tex]20 + \frac{10\log{n}}{n^{2}} + \frac{5}{n^{3}} \leq cn^{3}[/tex]

I am going to use [tex]n = n_{0} = 1[/tex]. So

[tex]20 + 5 \leq c[/tex]

[tex]c \geq 25[/tex]

There is a solution for the inequality, which proves that [tex]f(n) = 20n^{3} + 10n\log{n} + 5[/tex] is [tex]O(n^{3})[/tex]

ACCESS MORE