Answer:
P(x >16.5) = 0.3372
Explanation:
Given data:
P = 0.07
n = 166
Available vegetarian dinner is 16
let [tex]P(X\leq 16)[/tex] is number of short vegetarian meals
[tex]P(X\leq 16)[/tex] = binomial distribution (166, 0.09)
[tex]np = 166\times 0.09 = 14.94[/tex]
n(1-p) = 166(1-0.09) = 151.06
Both value of np and n(1-p) greater than 5
x - normal distribution with
mean = np = 14.94
standard deviation[tex] = \sqrt{np(1-p)}[/tex]
[/tex]= \sqrt{14.94(1-0.09)}[/tex]
standard deviation = 3.687
Find P(x> 16) i.e P(X>16 ) = P(x >16.5)
P(x >16.5) = 1 - P(x <16.5)
[tex]= 1 - P(\frac{x-\mu}{\sigma} < \frac{16.5 - \mu}{\sigma}[/tex]
[tex]= 1 - P{Z < [\frac{16.5 - 14.94}{3.67}][/tex]
= 1 - P{z< 0.425}
= 1 - 0.6628
P(x >16.5) = 0.3372