An airline has found about 7% of its passengers request vegetarian meals. On a flight with 166 passengers the airline has 16 vegetarian dinners available. What's the probability that it will be short of vegetarian dinners? (hint: Let X be the number of vegetarians. Identify a probability model for X. Write a probability expression for X that reflects "Short of vegetarian dinners" and compute.)

Respuesta :

Answer:

P(x >16.5) = 0.3372

Explanation:

Given data:

P = 0.07

n = 166

Available vegetarian  dinner is 16

let [tex]P(X\leq 16)[/tex] is number of short vegetarian meals

[tex]P(X\leq  16)[/tex]  = binomial distribution (166, 0.09)

[tex]np = 166\times 0.09 = 14.94[/tex]

n(1-p) = 166(1-0.09) = 151.06

Both value of np and n(1-p) greater than 5

x -  normal distribution  with

mean  = np = 14.94

standard deviation[tex] = \sqrt{np(1-p)}[/tex]

                                [/tex]= \sqrt{14.94(1-0.09)}[/tex]

standard deviation = 3.687

Find P(x> 16) i.e P(X>16 ) = P(x >16.5)

P(x >16.5) = 1 - P(x <16.5)

                [tex]= 1 - P(\frac{x-\mu}{\sigma} < \frac{16.5 - \mu}{\sigma}[/tex]

         [tex]= 1 - P{Z < [\frac{16.5 - 14.94}{3.67}][/tex]

                = 1 - P{z< 0.425}

                 = 1 - 0.6628

P(x >16.5) = 0.3372

ACCESS MORE