The equilibrium constant, K, for the following reaction is 1.80x102 at 698 K. 2HI(9) =H2(g) +129) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.311 MHI. 4.17x10 - MH, and 4.17x10-2 MIL- What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.174 mol of HI(g) is added to the flask? [HI] = [H2) = [12] =

Respuesta :

Explanation:

The equilibrium constant of the reaction = [tex]K_c=1.80\times 10^{-2}[/tex]

Initial  concentration of HI = 0.311 M

After addition 0.174 mol of HI(g)

Concentration of HI added = [tex]\frac{0.174 mol}{1 L}=0.174 M[/tex]

New concentration of HI = 0.311 M + 0.174 M = 0.485 M

     [tex]2HI\rightleftharpoons H_2+I_2[/tex]

Initial  concentration:

0.311 M                [tex]4.71\times 10^{-2} M[/tex]           [tex]4.71\times 10^{-2} M[/tex]  

At equilibrium:

(0.485 M - x)  [tex](4.71\times 10^{-2} M+x)[/tex]           [tex](4.71\times 10^{-2} M+x)[/tex]  

[tex]K_{eq}=\frac{[H_2][I_2]}{[HI]^2}[/tex]

[tex]1.80\times 10^{-2}=\frac{(4.71\times 10^{-2} M+x)\times (4.71\times 10^{-2} M+x)}{ (0.485 M-x)^2}[/tex]

[tex]\sqrt{1.80\times 10^{-2}}=\frac{(4.71\times 10^{-2} M+x)}{ (0.485 M-x)}[/tex]

[tex]0.1342=\frac{(4.71\times 10^{-2} M+x)}{(0.485 M-x)}[/tex]

[tex]0.065087 M-0.1342x=4.71\times 10^{-2} M+x[/tex]

[tex]0.065087 M-4.71\times 10^{-2} M=1.1342x[/tex]

[tex]x=\frac{0.017987 M}{1.3142}=0.01586 M[/tex]

Equilibrium concentrations:

[tex][HI]=0.485 M-x = 0.485 M - 0.01586 M= 0.46914 M[/tex]

[tex][H_2]=[I_2]=4.71\times 10^{-2} M+x=4.71\times 10^{-2} M+0.01586 M[/tex]

[tex][H_2]=[I_2]=0.06296 M[/tex]

ACCESS MORE