Explanation:
The equilibrium constant of the reaction = [tex]K_c=1.80\times 10^{-2}[/tex]
Initial concentration of HI = 0.311 M
After addition 0.174 mol of HI(g)
Concentration of HI added = [tex]\frac{0.174 mol}{1 L}=0.174 M[/tex]
New concentration of HI = 0.311 M + 0.174 M = 0.485 M
[tex]2HI\rightleftharpoons H_2+I_2[/tex]
Initial concentration:
0.311 M [tex]4.71\times 10^{-2} M[/tex] [tex]4.71\times 10^{-2} M[/tex]
At equilibrium:
(0.485 M - x) [tex](4.71\times 10^{-2} M+x)[/tex] [tex](4.71\times 10^{-2} M+x)[/tex]
[tex]K_{eq}=\frac{[H_2][I_2]}{[HI]^2}[/tex]
[tex]1.80\times 10^{-2}=\frac{(4.71\times 10^{-2} M+x)\times (4.71\times 10^{-2} M+x)}{ (0.485 M-x)^2}[/tex]
[tex]\sqrt{1.80\times 10^{-2}}=\frac{(4.71\times 10^{-2} M+x)}{ (0.485 M-x)}[/tex]
[tex]0.1342=\frac{(4.71\times 10^{-2} M+x)}{(0.485 M-x)}[/tex]
[tex]0.065087 M-0.1342x=4.71\times 10^{-2} M+x[/tex]
[tex]0.065087 M-4.71\times 10^{-2} M=1.1342x[/tex]
[tex]x=\frac{0.017987 M}{1.3142}=0.01586 M[/tex]
Equilibrium concentrations:
[tex][HI]=0.485 M-x = 0.485 M - 0.01586 M= 0.46914 M[/tex]
[tex][H_2]=[I_2]=4.71\times 10^{-2} M+x=4.71\times 10^{-2} M+0.01586 M[/tex]
[tex][H_2]=[I_2]=0.06296 M[/tex]