Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:
[tex]ln(\frac{P_2}{P_1}) =-\frac{AH_{vap}}{R} (\frac{1}{T_2}-\frac{1}{T_1})[/tex]
[tex]ln(\frac{0.669}{0.179}) =-\frac{AH_{vap}}{8.3145 J.mol^{-1}K^{-1}} (\frac{1}{359.15K}-\frac{1}{323.15K})[/tex]
[tex]1.3184 =-\frac{AH_{vap}}{8.3145 J.mol^{-1}K^{-1}} (-3.10186*10^{-4}K{^-1})[/tex]
ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm
[tex]ln(\frac{P_2}{P_1}) =-\frac{AH_{vap}}{R} (\frac{1}{T_2}-\frac{1}{T_1})[/tex]
[tex]ln(\frac{1atm}{0.179atm}) =-\frac{35339.5 J/mol}{8.3145 J.mol^{-1}K^{-1}} (\frac{1}{T_2}-\frac{1}{323.15K})[/tex]
[tex]1.7203=-4250.34 (\frac{1}{T_2}-\frac{1}{323.15K})[/tex]
T₂=371.77 K= 98.62 °C