The equilibrium constant in terms of pressure. Kp for the following process is 0.179 at 50 °C. It increases to 0.669 at 86 °C. C-H16) P C-H16(2) (a) Calculate the molar enthalpy of vaporization (AHvad) of heptane, C-H16 AHvap = kJ mol-1 (b) Calculate the normal boiling point of heptane. Normal boiling point =

Respuesta :

Answer:

a) ΔHvap=35.3395 kJ/mol

b) Tb=98.62 °C

Explanation:

Given the reaction:

C₇H₁₆ (l) ⇔ C₇H₁₆ (g)

Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.

When

T₁=50°C=323.15K ⇒P₁=0.179

T₂=86°C=359.15K ⇒P₂=0.669

The Clasius-Clapeyron equation is:

[tex]ln(\frac{P_2}{P_1}) =-\frac{AH_{vap}}{R} (\frac{1}{T_2}-\frac{1}{T_1})[/tex]

[tex]ln(\frac{0.669}{0.179}) =-\frac{AH_{vap}}{8.3145 J.mol^{-1}K^{-1}} (\frac{1}{359.15K}-\frac{1}{323.15K})[/tex]

[tex]1.3184 =-\frac{AH_{vap}}{8.3145 J.mol^{-1}K^{-1}} (-3.10186*10^{-4}K{^-1})[/tex]

ΔHvap=35339.5 J/mol=35.3395 KJ/mol

Normal boiling point ⇒ P=1 atm

Hence, we find the normal boiling point where:

T₁=323.15K

P₁=0.179 atm

P₂=1 atm

[tex]ln(\frac{P_2}{P_1}) =-\frac{AH_{vap}}{R} (\frac{1}{T_2}-\frac{1}{T_1})[/tex]

[tex]ln(\frac{1atm}{0.179atm}) =-\frac{35339.5 J/mol}{8.3145 J.mol^{-1}K^{-1}} (\frac{1}{T_2}-\frac{1}{323.15K})[/tex]

[tex]1.7203=-4250.34 (\frac{1}{T_2}-\frac{1}{323.15K})[/tex]

T₂=371.77 K= 98.62 °C