For the following reaction, 2HI(g) – H (9) +1,9 the equilibrium constant k, = 2.60X10-2 at 1110 K and 2.68x10-2 at 1140 K. Calculate AHⓇ for the reaction, assuming no change in AH between 1110 K and 1140 K. AH = kJ mol-1

Respuesta :

Answer:

10.63 kJ/mol is the [tex]\Delta H[/tex] of the reaction.

Explanation:

To calculate [tex]\Delta H[/tex] of the reaction, we use Van't Hoff's equation, which is:

[tex]\ln (\frac{K_1}{K_2})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_{1}[/tex] = equilibrium constant at [tex]T_1[/tex]

[tex]K_{2}[/tex] = equilibrium constant at [tex]T_2[/tex]

[tex]\Delta H[/tex] = Enthalpy change of the reaction

R = Gas constant = 8.314 J/mol K

Given : [tex]K_1=2.60\times 10^{-2}[/tex]

[tex]K_2=2.68\times 10^{-2}[/tex]

[tex]T_1[/tex] = initial temperature = [tex]1110 K[/tex]

[tex]T_2[/tex] = final temperature = [tex]1140 K[/tex]

[tex]\Delta H[/tex] = ?

Putting values in above equation, we get:

[tex]\ln(\frac{2.68\times 10^{-2}}{2.60\times 10^{-2}})=\frac{\Delta H}{8.314J/mol.K}[\frac{1}{1110 K}-\frac{1}{1140 K}][/tex]

[tex]\Delta H=10,627.617 J/mol=10.63 kJ/mol[/tex]

10.63 kJ/mol is the [tex]\Delta H[/tex] of the reaction.