Answer:
10.63 kJ/mol is the [tex]\Delta H[/tex] of the reaction.
Explanation:
To calculate [tex]\Delta H[/tex] of the reaction, we use Van't Hoff's equation, which is:
[tex]\ln (\frac{K_1}{K_2})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_{1}[/tex] = equilibrium constant at [tex]T_1[/tex]
[tex]K_{2}[/tex] = equilibrium constant at [tex]T_2[/tex]
[tex]\Delta H[/tex] = Enthalpy change of the reaction
R = Gas constant = 8.314 J/mol K
Given : [tex]K_1=2.60\times 10^{-2}[/tex]
[tex]K_2=2.68\times 10^{-2}[/tex]
[tex]T_1[/tex] = initial temperature = [tex]1110 K[/tex]
[tex]T_2[/tex] = final temperature = [tex]1140 K[/tex]
[tex]\Delta H[/tex] = ?
Putting values in above equation, we get:
[tex]\ln(\frac{2.68\times 10^{-2}}{2.60\times 10^{-2}})=\frac{\Delta H}{8.314J/mol.K}[\frac{1}{1110 K}-\frac{1}{1140 K}][/tex]
[tex]\Delta H=10,627.617 J/mol=10.63 kJ/mol[/tex]
10.63 kJ/mol is the [tex]\Delta H[/tex] of the reaction.