Answer:
The equilibrium concentration of [tex]PCl_5=0.228 M[/tex].
The equilibrium concentration of [tex]PCl_3=0.280 M -0.228 M=0.052M[/tex].
The equilibrium concentration of [tex]Cl_2=0.280 M -0.228 M=0.052M[/tex].
Explanation:
Answer:
The equilibrium concentration of HCl is 0.01707 M.
Explanation:
Equilibrium constant of the reaction = [tex]K_c=83.3[/tex]
Moles of [tex]PCl_3 = 0.280 mol[/tex]
Concentration of [tex][PCl_3]=\frac{0.280 mol}{1.00 L}=0.280 M[/tex]
Moles of [tex]Cl_ = 0.280 mol[/tex]
Concentration of [tex][Cl_2]=\frac{0.280 mol}{1.00 L}=0.280M[/tex]
[tex]PCl_3(g)+Cl_2(g)\rightleftharpoons PCl_5(g)[/tex]
Initial: 0.280 0.280 0
At eq'm: (0.280-x) (0.280-x) x
We are given:
[tex][PCl_3]_{eq}=(0.280-x)[/tex]
[tex][Cl_2]_{eq}=(0.280-x)[/tex]
[tex][PCl_5]_{eq}=x[/tex]
Calculating for 'x'. we get:
The expression of [tex]K_{c}[/tex] for above reaction follows:
[tex]K_c=\frac{[PCl_5]}{[PCl_3][Cl_2]}[/tex]
Putting values in above equation, we get:
[tex]83.3=\frac{x}{(0.280-x)\times (0.280-x)}[/tex]
On solving this quadratic equation we get:
x = 0.228, 0.344
0.228 M < 0.280 M< 0.344 M
x = 0.228 M
The equilibrium concentration of [tex]PCl_5=0.228 M[/tex].
The equilibrium concentration of [tex]PCl_3=0.280 M -0.228 M=0.052M[/tex].
The equilibrium concentration of [tex]Cl_2=0.280 M -0.228 M=0.052M[/tex].