The equilibrium constant, K., for the following reaction is 83.3 at 500 K. PC13(g) + Cl2(g) = PC13(E) Calculate the equilibrium concentrations of reactant and products when 0.280 moles of PCl, and 0.280 moles of Cl, are introduced into a 1.00 L vessel at 500 K. [PC13] = [Cl] = [PC13] =

Respuesta :

Answer:

The equilibrium concentration of [tex]PCl_5=0.228 M[/tex].

The equilibrium concentration of [tex]PCl_3=0.280 M -0.228 M=0.052M[/tex].

The equilibrium concentration of [tex]Cl_2=0.280 M -0.228 M=0.052M[/tex].

Explanation:

Answer:

The equilibrium concentration of HCl is 0.01707 M.

Explanation:

Equilibrium constant of the reaction = [tex]K_c=83.3[/tex]

Moles of [tex]PCl_3 = 0.280 mol[/tex]

Concentration of  [tex][PCl_3]=\frac{0.280 mol}{1.00 L}=0.280 M[/tex]

Moles of [tex]Cl_ = 0.280 mol[/tex]

Concentration of [tex][Cl_2]=\frac{0.280 mol}{1.00 L}=0.280M[/tex]

           [tex]PCl_3(g)+Cl_2(g)\rightleftharpoons PCl_5(g)[/tex]

Initial:            0.280      0.280                            0

At eq'm:         (0.280-x)   (0.280-x)                     x

We are given:

[tex][PCl_3]_{eq}=(0.280-x)[/tex]

[tex][Cl_2]_{eq}=(0.280-x)[/tex]

[tex][PCl_5]_{eq}=x[/tex]

Calculating for 'x'. we get:

The expression of [tex]K_{c}[/tex] for above reaction follows:

[tex]K_c=\frac{[PCl_5]}{[PCl_3][Cl_2]}[/tex]

Putting values in above equation, we get:

[tex]83.3=\frac{x}{(0.280-x)\times (0.280-x)}[/tex]

On solving this quadratic equation we get:

x = 0.228, 0.344

0.228 M < 0.280 M< 0.344 M

x = 0.228 M

The equilibrium concentration of [tex]PCl_5=0.228 M[/tex].

The equilibrium concentration of [tex]PCl_3=0.280 M -0.228 M=0.052M[/tex].

The equilibrium concentration of [tex]Cl_2=0.280 M -0.228 M=0.052M[/tex].