Answer:
Kc = 77.9
Explanation:
To solve this equilibrium problem we will use an ICE Chart. We recognise 3 stages: Initial (I), Change (C) and Equilibrium (E). We complete each row with the concentration or change of concentration in that stage. Since the container is of 1.00 L, the initial concentrations are [NO] = 0.103 M and [Br₂] = 9.75 × 10⁻² M and the equilibrium concentration of Br₂ is 6.21 × 10⁻² M. Then,
2 NO(g) + Br₂(g) ⇄ 2 NOBr(g)
I 0.103 9.75 × 10⁻² 0
C -2x -x +2x
E 0.103 -2x 9.75 × 10⁻² - x 2x
Also, we know that
[Br₂]eq = 9.75 × 10⁻² - x = 6.21 × 10⁻² ⇒ x = 3.54 × 10⁻² M
We can use the value of x to find the concentrations at equilibrium:
[NO] = 0.103 -2x = 0.103 - 2 . 3.54 × 10⁻² = 3.22 × 10⁻² M
[Br₂] = 6.21 × 10⁻² M
[NOBr] = 2x = 2 . 3.54 × 10⁻² = 7.08 × 10⁻² M
We can use these concentrations in the equilibrium constant (Kc) expression.
[tex]Kc=\frac{[NOBr]^{2} }{[NO]^{2}.[Br_{2}] } =\frac{(7.08 \times 10^{-2} )^{2} }{(3.22 \times 10^{-2})^{2}.6.21 \times 10^{-2} } =77.9[/tex]