Respuesta :
Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = [tex]k_a=4.5\times 10^{-4}[/tex]
The equilibrium reaction for dissociation of [tex]HNO_2[/tex] (weak acid) is,
[tex]HNO_2+H_2O\rightleftharpoons NO_2^-+H_3O^+[/tex]
initially conc. c 0 0
At eqm. [tex]c(1-\alpha)[/tex] [tex]c\alpha[/tex] [tex]c\alpha[/tex]
First we have to calculate the concentration of value of dissociation constant [tex](\alpha )[/tex].
Formula used :
[tex]k_a=\frac{(c\alpha)(c\alpha)}{c(1-\alpha)}[/tex]
Now put all the given values in this formula ,we get the value of dissociation constant [tex](\alpha )[/tex].
[tex]4.5\times 10^{-4}=\frac{(0.150\alpha)(0.150\alpha)}{0.150(1-\alpha)}[/tex]
[tex]4.5\times 10^{-4} - 4.5\times 10^{-4}\alpha =0.150\alpha ^2[/tex]
[tex]0.150\alpha ^2+4.5\times 10^{-4}\alpha-4.5\times 10^{-4}=0[/tex]
By solving the terms, we get
[tex]\alpha=0.0533[/tex]
No we have to calculate the concentration of hydronium ion or hydrogen ion.
[tex][H^+]=c\alpha=0.150\times 0.0533=0.007995 M[/tex]
Now we have to calculate the pH.
[tex]pH=-\log [H^+][/tex]
[tex]pH=-\log (0.007995 M)[/tex]
[tex]pH=2.097\approx 2.1[/tex]
pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9