contestada

Using Gibbs Equation, dU=TdS-pdV show that (dS/dV) at a constant U =P/T. The reciprocal of (dS/dU)v = 1/T.

Respuesta :

Explanation:

dU=TdS-pdV (given)

To prove = 1) [tex](\frac{dS}{dV})_U=\frac{P}{T}[/tex] (at constant U)

2) [tex](\frac{dS}{dU})_v=\frac{1}{T}[/tex] (at constant V)

Solution: 1)

dU=TdS-PdV

[tex]PdV=TdS-dU[/tex]

[tex]P=\frac{(TdS)}{dV}-\frac{dU}{dV}[/tex]

Derivative of constant is zero.

Given that internal energy is ,U = constant

[tex]P=T\frac{dS}{dV}-0[/tex]

[tex]\frac{dS)}{dV}=\frac{P}{T}[/tex] (hence proved)

Solution: 2)

dU=TdS-PdV

Differentiating with respect to dU, we get:

[tex](\frac{dU}{dU})_v=T(\frac{dS}{dU})_v-P(\frac{dV}{dU})_v[/tex]

Derivative of constant is zero.

Given that volume is constant , V= constant

[tex]1=T(\frac{dS}{dU})_v[/tex]

[tex](\frac{dS}{dU})_v=\frac{1}{T}[/tex] (hence proved)