Explanation:
According to the Henderson-Hasselbalch equation, the relation between pH and [tex]pK_{a}[/tex] is as follows.
pH = [tex]pK_{a} + log \frac{base}{acid}[/tex]
where, pH = 7.4 and [tex]pK_{a}[/tex] = 7.21
As here, we can use the [tex]pK_{a}[/tex] nearest to the desired pH.
So, 7.4 = 7.21 + [tex]log \frac{base}{acid}[/tex]
0.19 = [tex]log \frac{base}{acid}[/tex]
[tex]\frac{base}{acid}[/tex] = 1.55
1 mM phosphate buffer means [tex][HPO_{4}][/tex] + [tex][H_{2}PO_{4}][/tex] = 1 mM
Therefore, the two equations will be as follows.
[tex]\frac{HPO_{4}}{H_{2}PO_{4}}[/tex] = 1.55 ............. (1)
[tex][HPO_{4}][/tex] + [tex][H_{2}PO_{4}][/tex] = 1 mM ........... (2)
Now, putting the value of [tex][HPO_{4}][/tex] from equation (1) into equation (2) as follows.
1.55[tex][H_{2}PO_{4}] + [tex][H_{2}PO_{4}][/tex] = 1 mM
2.55 [tex][H_{2}PO_{4}][/tex] = 1 mM
[tex][H_{2}PO_{4}][/tex] = 0.392 mM
Putting the value of [tex][H_{2}PO_{4}][/tex] in equation (1) we get the following.
0.392 mM + [tex][HPO_{4}][/tex] = 1 mM
[tex][HPO_{4}][/tex] = (1 - 0.392) mM
[tex][HPO_{4}][/tex] = 0.608 mM
Thus, we can conclude that concentration of the acid must be 0.608 mM.