Answer: The increase in pressure is 0.003 atm
Explanation:
To calculate the final pressure, we use the Clausius-Clayperon equation, which is:
[tex]\ln(\frac{P_2}{P_1})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]P_1[/tex] = initial pressure which is the pressure at normal boiling point = 1 atm
[tex]P_2[/tex] = final pressure = ?
[tex]\Delta H[/tex] = Enthalpy change of the reaction = 28.8 kJ/mol = 28800 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
[tex]T_1[/tex] = initial temperature = [tex]801^oC=[801+273]K=1074K[/tex]
[tex]T_2[/tex] = final temperature = [tex](801+1.00)^oC=802.00=[802+273]K=1075K[/tex]
Putting values in above equation, we get:
[tex]\ln(\frac{P_2}{1})=\frac{28800J/mol}{8.314J/mol.K}[\frac{1}{1074}-\frac{1}{1075}]\\\\\ln P_2=3\times 10^{-3}atm\\\\P_2=e^{3\times 10^{-3}}=1.003atm[/tex]
Change in pressure = [tex]P_2-P_1=1.003-1.00=0.003atm[/tex]
Hence, the increase in pressure is 0.003 atm