Determine the pH of the following base solutions. (Assume that all solutions are at 25°C and the ion-product constant of water, Kw, is 1.01 ✕ 10−14.) (a) 1.39 ✕ 10−2 M NaOH WebAssign will check your answer for the correct number of significant figures. (b) 0.0051 M Al(OH)3 WebAssign will check your answer for the correct number of significant figures.

Respuesta :

Answer:

a) The pH of the solution is 12.13.

b) The pH of the solution is 12.17.

Explanation:

Ionic product of water =[tex]K_w=1.01\times 10^-{14}[/tex]

[tex]K_w=[H^+][OH^-][/tex]

[tex]1.01\times 10^-{14}=[H^+][OH^-][/tex]

Taking negative logarithm on both sides:

[tex]-\log[1.01\times 10^-{14}]=(-\log [H^+])+(-\log [OH^-])[/tex]

The pH is the negative logarithm of hydrogen ion concentration in solution.

The pOH is the negative logarithm of hydroxide ion concentration in solution.

[tex]13.99=pH+pOH[/tex]

a) [tex]1.39\times 10^{-2} M[/tex] of NaOH.

Concentration of hydroxide ions:

[tex]NaOH(aq)\rightarrow Na^+(aq)+OH^-(aq)[/tex]

So, [tex][OH^-]=1\times [NaOH]=1\times 1.39\times 10^{-2} M=1.39\times 10^{-2} M[/tex]

[tex]pOH=-\log[1.39\times 10^{-2} M]=1.86[/tex]

[tex]13.99=pH+pOH[/tex]

[tex]13.99=pH+1.86[/tex]

pH=13.99-1.86=12.13

b) [tex]0.0051 M[/tex] of NaOH.

Concentration of hydroxide ions:

[tex]Al(OH)_3(aq)\rightarrow Al^{3+}(aq)+3OH^-(aq)[/tex]

So, [tex][OH^-]=3\times [Al(OH)_3]=3\times 0.0051 M=0.0153 M[/tex]

[tex]pOH=-\log[0.0153 M]=1.82[/tex]

[tex]13.99=pH+pOH[/tex]

[tex]13.99=pH+1.82[/tex]

pH=13.99-1.82=12.17