Answer:
ICE Table Figure
a. 67.37 g [tex]S_2Cl_2[/tex]
b. 35.62 g [tex]Cl_2[/tex]
c. 58.61 g[tex]S_2Cl_2[/tex]
Explanation:
For the ICE table we have to keep in mind that we have 4 moles of [tex]Cl_2[/tex] and 1 mol of [tex]S_8[/tex] and the reactives are consumed, so for [tex]Cl_2[/tex] we will have -4X and for [tex]S_8[/tex] we will have -X. Follow the same logic we will have -4X for [tex]S_2Cl_2[/tex].
a. Mass of the product
Molar mass of [tex]S_8[/tex]= 256.52 g/mol
Molar mass of [tex]Cl_2[/tex]=70.9 g/mol
Molar mass of [tex]S_2Cl_2[/tex]=135.03 g/mol
We have to find the limiting reagent in the reaction:
[tex]S_8+4Cl_2->4S_2Cl_2[/tex]
[tex]\frac{32}{256.52}=0.124molS_8[/tex]
[tex]\frac{71}{70.9}=1 molCl_2[/tex]
Divide by the coefficients in the balanced reaction:
[tex]\frac{0.124}{1}=0.124mol[/tex]
[tex]\frac{1}{4}=0.25 mol[/tex]
The limiting reagent would be [tex]S_8[/tex]
Now is posible to calculate the amount of [tex]S_2Cl_2[/tex] produced:
[tex]0.124molS_8\frac{4molS_2Cl_2}{1 molS_8}\frac{135.03gS_2Cl_2}{1 molS_2Cl_2}=67.37gS_2Cl_2[/tex]
b. Mass in excess
[tex]0.124molS_8\frac{4molCl_2}{1 molS_8}\frac{70.9gCl_2}{1 molCl_2}=35.38gCl_2[/tex]
[tex]Excess\hspace{0.1cm}=\hspace{0.1cm}71gCl_2-35.38gCl_2=35.62 gCl_2[/tex]
C. 87%Yield
[tex]67.37gS_2Cl_2\frac{87}{100}=58.61gS_2Cl_2[/tex]