6. Write the ICE chart for the reaction of 32.0 g of sulfur and 71.0 g of chlorine: S8 + 4 Cl24S2Cl2 After completing the chart give a. the mass of product b. the mass of agent in excess c. the mass produced if there is an 87.% yield

Respuesta :

Answer:

ICE Table Figure

a. 67.37 g [tex]S_2Cl_2[/tex]

b. 35.62 g [tex]Cl_2[/tex]

c. 58.61 g[tex]S_2Cl_2[/tex]

Explanation:

For the ICE table we have to keep in mind that we have 4 moles of [tex]Cl_2[/tex] and 1 mol of [tex]S_8[/tex] and the reactives are consumed, so for [tex]Cl_2[/tex] we will have -4X and for [tex]S_8[/tex] we will have -X. Follow the same logic we will have -4X for [tex]S_2Cl_2[/tex].

a. Mass of the product

Molar mass of [tex]S_8[/tex]= 256.52 g/mol

Molar mass of [tex]Cl_2[/tex]=70.9 g/mol

Molar mass of [tex]S_2Cl_2[/tex]=135.03 g/mol

We have to find the limiting reagent in the reaction:

[tex]S_8+4Cl_2->4S_2Cl_2[/tex]

[tex]\frac{32}{256.52}=0.124molS_8[/tex]

[tex]\frac{71}{70.9}=1 molCl_2[/tex]

Divide by the coefficients in the balanced reaction:

[tex]\frac{0.124}{1}=0.124mol[/tex]

[tex]\frac{1}{4}=0.25 mol[/tex]

The limiting reagent would be [tex]S_8[/tex]

Now is posible to calculate the amount of [tex]S_2Cl_2[/tex] produced:

[tex]0.124molS_8\frac{4molS_2Cl_2}{1 molS_8}\frac{135.03gS_2Cl_2}{1 molS_2Cl_2}=67.37gS_2Cl_2[/tex]

b. Mass  in excess

[tex]0.124molS_8\frac{4molCl_2}{1 molS_8}\frac{70.9gCl_2}{1 molCl_2}=35.38gCl_2[/tex]

[tex]Excess\hspace{0.1cm}=\hspace{0.1cm}71gCl_2-35.38gCl_2=35.62 gCl_2[/tex]

C. 87%Yield

[tex]67.37gS_2Cl_2\frac{87}{100}=58.61gS_2Cl_2[/tex]

Ver imagen jescaherga
ACCESS MORE