Answer : The temperature at top mount everest will be 344 K
Explanation :
The Clausius- Clapeyron equation is :
[tex]\ln (\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}\times (\frac{1}{T_1}-\frac{1}{T_2})[/tex]
where,
[tex]P_1[/tex] = atmospheric pressure at at sea level = 101.3 kPa
[tex]P_2[/tex] = atmospheric pressure at top mount everest = 33.7 kPa
[tex]T_1[/tex] = normal boiling point of water = [tex]100^oC=273+100=373K[/tex]
[tex]T_2[/tex] = temperature at top mount everest = ?
[tex]\Delta H_{vap}[/tex] = heat of vaporization = 40.7 kJ/mole = 40700 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
[tex]\ln (\frac{33.7}{101.3})=\frac{40700J/mole}{8.314J/K.mole}\times (\frac{1}{373}-\frac{1}{T_2})[/tex]
[tex]T_2=344.141K\approx 344K[/tex]
Hence, the temperature at top mount everest will be 344 K