Explanation:
Formula to calculate the Debye-Hückel screening length is as follows.
[tex]\lambda = (\frac{\varepsilon _{r}.\varepsilon _{o}.K_{b}T}{2(Z_{i}e)^{2}N_{A}I})^{\frac{1}{2}}[/tex] ......... (1)
where, [tex]\varepsilon _{r}[/tex] = dielectric constt. of water = 78.5
[tex]\varepsilon _{o}[/tex] = permitivity of space = [tex]8.85 \times 10^{-12} C^{2}/Jm[/tex]
T = temperature = 298 K
e = charge on electron = [tex]9.1 \times 10^{-19} C[/tex]
[tex]N_{A}[/tex] = Avogadro's number = [tex]6.02 \times 10^{23}[/tex] ions/mol
I = ionic activity = 0.001 molal
[tex]Z_{i}[/tex] = charge on the species = 1 (in case of both [tex]Na^{+}[/tex] and [tex]Cl^{-}[/tex])
Also, I = [tex]\frac{1}{2} \sumC_{i}Z^{2}_{i}[/tex]
= [tex]\frac{1}{2}[(1)^{2} \times 0.001 + (0.001) \times (1)^{2}[/tex]
= 0.001 molal
Now, putting all the given values into equation (1) as follows.
[tex]\lambda = (\frac{\varepsilon _{r}.\varepsilon _{o}.K_{b}T}{2(Z_{i}e)^{2}N_{A}I})^{\frac{1}{2}}[/tex]
= [tex](\frac{(78.5) \times 8.85 \times 10^{-12} \times 1.38 \times 10^{-23} \times 298}{2(1)^{2}(1.6 \times 10^{-19})^{2} \times 6.02 \times 10^{23} \times 0.01})^{\frac{1}{2}}[/tex]
= [tex]3044.5 \times 10^{-10}[/tex] m
= [tex]3044.5 A^{o}[/tex]
Thus, we can conclude that Debye-Hückel screening length in given solution is [tex]3044.5 A^{o}[/tex].