Answer : The molarity of the ion is [tex]1.05\times 10^{-3}M[/tex]
Explanation : Given,
Density of sample = 1.00 g/mL
Concentration of [tex]Ca^{2+}[/tex] = 42 mg/kg
First we have to calculate the volume of sample.
Let us assume that the mass of sample be 1 kg or 1000 g.
[tex]Density=\frac{Mass}{Volume}[/tex]
[tex]1.00g/mL=\frac{1000g}{Volume}[/tex]
[tex]Volume=\frac{1000g}{1.00g/mL}[/tex]
[tex]Volume=1000mL=1L[/tex] (1 L = 1000 mL)
Now we have to calculate the moles of [tex]Ca^{2+}[/tex]
As we are given that,
Mass of [tex]Ca^{2+}[/tex] in 1 kg of sample = 42 mg = 0.042 g
Molar mass of Ca = 40 g/mole
[tex]\text{Moles of }Ca^{2+}=\frac{\text{Mass of }Ca^{2+}}{\text{Molar mass of }Ca^{2+}}=\frac{0.042g}{40g/mol}=1.05\times 10^{-3}mol[/tex]
Now we have to calculate the molarity of the ion.
[tex]\text{Molarity}=\frac{\text{Moles of }Ca^{2+}}{\text{Volume of sample}}[/tex]
[tex]\text{Molarity}=\frac{1.05\times 10^{-3}mol}{1L}=1.05\times 10^{-3}mol/L=1.05\times 10^{-3}M[/tex]
Therefore, the molarity of the ion is [tex]1.05\times 10^{-3}M[/tex]