In parallelogram defg,, DH = x+3 HF= 3y GH=3x-3 and HE =5y + 4
![In parallelogram defg DH x3 HF 3y GH3x3 and HE 5y 4 class=](https://us-static.z-dn.net/files/dce/6bcc904dea9b8e4d7f2e57550a8b7804.png)
Answer:
The value of x and y is 9 and 4 units
Solution:
We have,
DH = x+3; HF= 3y and GH=3x-3; HE =5y + 4
For parallelogram, we know that,
DH=HF
So, [tex](x+3)=3 y\Rightarrow x=(3 y-3)[/tex]--------- (i)
Again, GH = HE
So, [tex]3x-3 = 5y +4[/tex]
[tex]\Rightarrow3 x=5 y+4+3[/tex]
[tex]x = \frac{(5y+7)}{3}[/tex] ………. (ii)
Now equating both (i) and (ii) we get,
[tex]\Rightarrow3 y-3=\frac{5 y+7}{3}[/tex]
[tex]\Rightarrow3\times(3y-3) = 5y+7[/tex]
[tex]\Rightarrow9y - 9 = 5y +7[/tex]
[tex]\Rightarrow9y-5y=7+9[/tex]
[tex]\Rightarrow4y = 16[/tex]
[tex]\Rightarrow y = 4[/tex]
So the value of [tex]x = 3\times4 -3 = 9[/tex]
The value of x and y is 9 and 4 units