Respuesta :
Answer: The value of [tex]K_p[/tex] for the reaction is 6.32 and concentrations of [tex](CH_3)_2C=CH,HCl\text{ and }(CH_3)_3CCl[/tex] is 0.094 M, 0.094 M and 0.106 M respectively.
Explanation:
Relation of [tex]K_p[/tex] with [tex]K_c[/tex] is given by the formula:
[tex]K_p=K_c(RT)^{\Delta ng}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = 3.45
[tex]K_c[/tex] = equilibrium constant in terms of concentration = ?
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature = 500 K
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=2-1=1[/tex]
Putting values in above equation, we get:
[tex]3.45=K_c\times (0.0821\times 500)^{1}\\\\K_c=\frac{3.45}{0.0821\times 500}=0.084[/tex]
The equation used to calculate concentration of a solution is:
[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume (in L)}}[/tex]
Initial moles of [tex](CH_3)_3CCl(g)[/tex] = 1.00 mol
Volume of the flask = 5.00 L
So, [tex]\text{Concentration of }(CH_3)_3CCl=\frac{1.00mol}{5.00L}=0.2M[/tex]
For the given chemical reaction:
[tex](CH_3)_3CCl(g)\rightarrow (CH_3)_2C=CH(g)+HCl(g)[/tex]
Initial: 0.2 - -
At Eqllm: 0.2 - x x x
The expression of [tex]K_c[/tex] for above reaction follows:
[tex]K_c=\frac{[(CH_3)_2C=CH]\times [HCl]}{[(CH_3)_3CCl]}[/tex]
Putting values in above equation, we get:
[tex]0.084=\frac{x\times x}{0.2-x}\\\\x^2+0.084x-0.0168=0\\\\x=0.094,-0.178[/tex]
Negative value of 'x' is neglected because initial concentration cannot be more than the given concentration
Calculating the concentration of reactants and products:
[tex][(CH_3)_2C=CH]=x=0.094M[/tex]
[tex][HCl]=x=0.094M[/tex]
[tex][(CH_3)_3CCl]=(0.2-x)=(0.2-0.094)=0.106M[/tex]
Hence, the value of [tex]K_p[/tex] for the reaction is 6.32 and concentrations of [tex](CH_3)_2C=CH,HCl\text{ and }(CH_3)_3CCl[/tex] is 0.094 M, 0.094 M and 0.106 M respectively.