Answer : The time taken by the reaction is 12714.46 minutes.
Explanation :
The expression used for second order kinetics is:
[tex]kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}[/tex]
where,
k = rate constant = [tex]1.6\times 10^{-3}M^{-1}s^{-1}[/tex]
t = time = ?
[tex][A_t][/tex] = final concentration = [tex]8.0\times 10^{-4}M[/tex]
[tex][A_o][/tex] = initial concentration = [tex]3.4\times 10^{-2}M[/tex]
Now put all the given values in the above expression, we get:
[tex](1.6\times 10^{-3})\times t=\frac{1}{8.0\times 10^{-4}}-\frac{1}{3.4\times 10^{-2}}[/tex]
[tex]t=762867.6471s=12714.46min[/tex] (1 min = 60 s)
Therefore, the time taken by the reaction is 12714.46 minutes.