Respuesta :
Answer:
Part a) The lateral area of the prism is [tex]LA=(48+6\sqrt{34})\ m^2[/tex]
Part b) The surface area of the prism is [tex]SA=(108+6\sqrt{34})\ m^2[/tex]
Step-by-step explanation:
Part a) What is the lateral area of the prism?
we know that
The lateral area of the prism is
[tex]LA=PH[/tex]
where
P is the perimeter of the base
H is the height of the prism
we have
[tex]a=6\ m\\b=10\ m\\H=3\ m[/tex]
The perimeter of the base is
[tex]P=a+b+c[/tex]
Find the hypotenuse of the right triangle
Applying the Pythagoras Theorem
[tex]c^2=6^2+10^2[/tex]
[tex]c^2=136[/tex]
[tex]c=\sqrt{136}\ m[/tex]
[tex]c=2\sqrt{34}\ m[/tex]
Find the perimeter of the base P
[tex]P=6+10+2\sqrt{34}[/tex]
[tex]P=(16+2\sqrt{34})\ m[/tex]
Find the lateral area of the prism
[tex]LA=(16+2\sqrt{34})3[/tex]
[tex]LA=(48+6\sqrt{34})\ m^2[/tex]
Part b) What is the total surface area?
The total surface area is
[tex]SA=LA+2B[/tex]
where
LA is the lateral area
B is the area of the base
Find the area of the base
Remember that the base is a triangle so
[tex]B=\frac{1}{2}(a)(b)[/tex]
we have
[tex]a=6\ m\\b=10\ m[/tex]
substitute
[tex]B=\frac{1}{2}(6)(10)[/tex]
[tex]B=30\ m^2[/tex]
Find the surface area of the prism
[tex]SA=LA+2B[/tex]
we have
[tex]B=30\ m^2[/tex]
[tex]LA=(48+6\sqrt{34})\ m^2[/tex]
substitute
[tex]SA=(48+6\sqrt{34})+2(30)[/tex]
[tex]SA=(48+6\sqrt{34})+60[/tex]
[tex]SA=(108+6\sqrt{34})\ m^2[/tex]