The bases of a prism are right triangles with side lengths 6 meters,
sters, and 10 meters. The height of the prism is 3 meters. What is
who lateral area of the prism? What is the total surface area?

Respuesta :

Answer:

Part a) The lateral area of the prism is [tex]LA=(48+6\sqrt{34})\ m^2[/tex]

Part b) The surface area of the prism is [tex]SA=(108+6\sqrt{34})\ m^2[/tex]

Step-by-step explanation:

Part a) What is  the lateral area of the prism?

we know that

The lateral area of the prism is

[tex]LA=PH[/tex]

where

P is the perimeter of the base

H is the height of the prism

we have

[tex]a=6\ m\\b=10\ m\\H=3\ m[/tex]

The perimeter of the base is

[tex]P=a+b+c[/tex]

Find the hypotenuse of the right triangle

Applying the Pythagoras Theorem

[tex]c^2=6^2+10^2[/tex]

[tex]c^2=136[/tex]

[tex]c=\sqrt{136}\ m[/tex]

[tex]c=2\sqrt{34}\ m[/tex]

Find the perimeter of the base P

[tex]P=6+10+2\sqrt{34}[/tex]

[tex]P=(16+2\sqrt{34})\ m[/tex]

Find the lateral area of the prism

[tex]LA=(16+2\sqrt{34})3[/tex]

[tex]LA=(48+6\sqrt{34})\ m^2[/tex]

Part b) What is the total surface area?

The total surface area is

[tex]SA=LA+2B[/tex]

where

LA is the lateral area

B is the area of the base

Find the area of the base

Remember that the base is a triangle so

[tex]B=\frac{1}{2}(a)(b)[/tex]

we have

[tex]a=6\ m\\b=10\ m[/tex]

substitute

[tex]B=\frac{1}{2}(6)(10)[/tex]

[tex]B=30\ m^2[/tex]

Find the surface area of the prism

[tex]SA=LA+2B[/tex]

we have

[tex]B=30\ m^2[/tex]

[tex]LA=(48+6\sqrt{34})\ m^2[/tex]

substitute

[tex]SA=(48+6\sqrt{34})+2(30)[/tex]

[tex]SA=(48+6\sqrt{34})+60[/tex]

[tex]SA=(108+6\sqrt{34})\ m^2[/tex]

ACCESS MORE