Respuesta :
Answer:
For proton
[tex]a=8.8\times 10^{17}\ m/s^2[/tex]
For electron
[tex]a=1.5\times 10^{21}\ m/s^2[/tex]
Explanation:
We know that
The mass of electron
[tex]m=9.1\times 10^{-31}\ kg[/tex]
The mass of proton
[tex]m=1.67\times 10^{-27}\ kg[/tex]
Charge on electron and proton
q₁=q₂=q
[tex]q=1.6\times 10^{-19}\ C[/tex]
Electrostatics force
[tex]F=K\dfrac{q_1q_2}{r^2}[/tex]
Now by putting the values
[tex]F=9\times 10^9\times \dfrac{1.6\times 10^{-19}\times 1.6\times 10^{-19}}{(4\times 10^{-10})^2}[/tex]
[tex]F=1.44\times 10^{-9}\ N[/tex]
For proton
F = m a
a =F/m
[tex]a=\dfrac{1.4\times 10^{-9}}{1.67\times 10^{-27}}\ m/s^2[/tex]
[tex]a=8.8\times 10^{17}\ m/s^2[/tex]
For electron
[tex]a=\dfrac{1.4\times 10^{-9}}{9.1\times 10^{-31}}\ m/s^2[/tex]
[tex]a=1.5\times 10^{21}\ m/s^2[/tex]
Answer:
(A) Acceleration of electron [tex]a=\frac{1.44\times 10^{-9}}{9.11\times 10^{-31}}=0.158\times 10^{22}m/sec^2[/tex]
(b) Acceleration of proton [tex]a=\frac{1.44\times 10^{-9}}{1.67\times 10^{-27}}=0.8622\times 10^{18}m/sec^2[/tex]
Explanation:
We have given distance between proton [tex]r=4\times 10^{-10}m[/tex]
Charge on proton and charge on electron [tex]q=1.6\times 10^{-19}[/tex]
According to coulombs law force between two charge [tex]F=\frac{1}{4\pi \epsilon _0}\frac{q_1q_2}{r^2}=\frac{Kq_1q_!}{r^2}=\frac{9\times 10^9\times 1.6\times 10^{-19}\times 1.6\times 10^{-19}}{(4\times 10^{-10})^2}=1.44\times 10^{-9}N[/tex]
Mass of electron [tex]m=9.11\times 10^{-31}kg[/tex]
So acceleration of electron [tex]a=\frac{1.44\times 10^{-9}}{9.11\times 10^{-31}}=0.158\times 10^{22}m/sec^2[/tex]
Mass of proton [tex]m=1.67\times 10^{-27}kg[/tex]
So acceleration of proton [tex]a=\frac{1.44\times 10^{-9}}{1.67\times 10^{-27}}=0.8622\times 10^{18}m/sec^2[/tex]