Respuesta :

Answer:

For proton

[tex]a=8.8\times 10^{17}\ m/s^2[/tex]

For electron

[tex]a=1.5\times 10^{21}\ m/s^2[/tex]

Explanation:

We know that

The mass of electron

[tex]m=9.1\times 10^{-31}\ kg[/tex]

The mass of proton

[tex]m=1.67\times 10^{-27}\ kg[/tex]

Charge on electron and proton

q₁=q₂=q

[tex]q=1.6\times 10^{-19}\ C[/tex]

Electrostatics force

[tex]F=K\dfrac{q_1q_2}{r^2}[/tex]

Now by putting the values

[tex]F=9\times 10^9\times \dfrac{1.6\times 10^{-19}\times 1.6\times 10^{-19}}{(4\times 10^{-10})^2}[/tex]

[tex]F=1.44\times 10^{-9}\ N[/tex]

For proton

F = m a

a =F/m

[tex]a=\dfrac{1.4\times 10^{-9}}{1.67\times 10^{-27}}\ m/s^2[/tex]

[tex]a=8.8\times 10^{17}\ m/s^2[/tex]

For electron

[tex]a=\dfrac{1.4\times 10^{-9}}{9.1\times 10^{-31}}\ m/s^2[/tex]

[tex]a=1.5\times 10^{21}\ m/s^2[/tex]

Answer:

(A) Acceleration of electron [tex]a=\frac{1.44\times 10^{-9}}{9.11\times 10^{-31}}=0.158\times 10^{22}m/sec^2[/tex]

(b) Acceleration of proton [tex]a=\frac{1.44\times 10^{-9}}{1.67\times 10^{-27}}=0.8622\times 10^{18}m/sec^2[/tex]          

Explanation:

We have given distance between proton [tex]r=4\times 10^{-10}m[/tex]

Charge on proton and charge on electron [tex]q=1.6\times 10^{-19}[/tex]

According to coulombs law force between two charge [tex]F=\frac{1}{4\pi \epsilon _0}\frac{q_1q_2}{r^2}=\frac{Kq_1q_!}{r^2}=\frac{9\times 10^9\times 1.6\times 10^{-19}\times 1.6\times 10^{-19}}{(4\times 10^{-10})^2}=1.44\times 10^{-9}N[/tex]

Mass of electron [tex]m=9.11\times 10^{-31}kg[/tex]

So acceleration of electron [tex]a=\frac{1.44\times 10^{-9}}{9.11\times 10^{-31}}=0.158\times 10^{22}m/sec^2[/tex]

Mass of proton [tex]m=1.67\times 10^{-27}kg[/tex]

So acceleration of proton  [tex]a=\frac{1.44\times 10^{-9}}{1.67\times 10^{-27}}=0.8622\times 10^{18}m/sec^2[/tex]

ACCESS MORE