Respuesta :
Answer:
a)Vc= 63.21 V
b)Xc= 495.756 Ω
Explanation:
Assume that voltage across the resistance is Vr and capacitor Vc
So
[tex]V^2=V^2c+V^2r[/tex]
Now by putting the values
[tex]120^2=V^2c+102^2[/tex]
Vc= 63.21 V
We know that for resistance
Vr= I R
102 = I x 800
I=0.1275 A
Let reactance of capacitor is Xc
So
Vc= Xc . I
63.21 = 0.1275 x Xc
Xc= 495.756 Ω
Answer:
(a) 63.21 volt
(b) 495.76 ohm
Explanation:
We have given Voltage V = 120 Volt
Frequency f = 60 Hz
Resistance R = 800 ohm
Voltage drop across resistor [tex]V_R=102volt[/tex]
(A) We know that resultant voltage for series circuit is given by [tex]V=\sqrt{V_R^2+V_C^2}[/tex]
[tex]120=\sqrt{102^2+V_C^2}[/tex]
Squaring both side [tex]14400=10404+V_C^2[/tex]
[tex]V_C=63.2139Volt[/tex]
(b) Current through the circuit [tex]I=\frac{V_R}{R}=\frac{102}{800}=0.1257A[/tex]
As [tex]V=IX_C[/tex]
So [tex]63.21=0.1257\times X_c[/tex]
[tex]X_c=495.76ohm[/tex]