Explanation:
It is given that,
The satellite is placed 330 km above Earth's surface, r' = 330 km
The radius of the Earth, R = 6,371 km
Time period of the satellite, T = 91 min = 5460 seconds
So, the radius of satellite, [tex]r=(330+6371)\ km=6701\times 10^3\ m[/tex]
(A) The speed of the satellite is given by :
[tex]v=\dfrac{2\pi r}{T}[/tex]
[tex]v=\dfrac{2\pi \times 6701\times 10^3}{5460}[/tex]
v = 7711.28 m/s
(B) The centripetal acceleration is given by :
[tex]a=\dfrac{v^2}{r}[/tex]
[tex]a=\dfrac{(7711.28)^2}{6701\times 10^3}[/tex]
[tex]a=8.87\ m/s^2[/tex]
Hence, this is the required solution.