Answer:
The length of the ladder is 3.23 m
Explanation:
Let's call [tex]y[/tex] the distance from the top of the ladder to the ground, [tex]x[/tex] the distance from the bottom of the ladder to the wall and [tex]l[/tex] the the length of the ladder.
So, we can write the following equation:
[tex]x^{2} +y^{2} =l^{2}[/tex]
So, if we derive both sides of the equation with respect to t, we get:
[tex]\frac{d}{dt} (x^{2} +y^{2} )=\frac{d}{dt}(l^{2} )\\2x\frac{dx}{dt}+2y\frac{dy}{dt}=0[/tex]
Solving for y, and replacing the values of x by 3, [tex]\frac{dx}{dt}[/tex] by 0.2m/s and [tex]\frac{dy}{dt}[/tex] by -0.5m/s, we get:
[tex]2y\frac{dy}{dt} =-2x\frac{dx}{dt} }\\y\frac{dy}{dt} =-x \frac{dx}{dt}[/tex]
[tex]y=\frac{-x\frac{dx}{dt} }{\frac{dy}{dt} }[/tex]
[tex]y=\frac{-3(0.2)}{-0.5}=1.2m[/tex]
Then, if [tex]x[/tex] is equal to 3 m and [tex]y[/tex] is equal to 1.2m, [tex]l[/tex] is equal to:
[tex]x^{2} +y^{2} =l^{2}[/tex]
[tex]3^{2} +1.2^{2} =l^{2}[/tex]
[tex]10.44 =l^{2}[/tex]
[tex]\sqrt{10.44} =l\\3.23=l[/tex]