Answer:
Y = 2.286 *[tex]10^{9}[/tex]) N/m
V = 436.46 m/s
Explanation:
Length, L= 1.2 m
Radius, R=3.8 mm=3.8*[tex]10^{-3}[/tex]
mass, m = 22 kg
Extension, ΔL = 2.5 mm
(a)
Forces P= mg =22*9.8 =215.6 N
Stress = P/A
= 215.6/[([tex]\pi[/tex](r)²]
Stress = ( 215.6 ) / [(3.14* (3.18*[tex]10^{-3}[/tex])²]
Stress= 4.755 * [tex]10^{6}[/tex] N/m²
Strain in rod = ΔL/L = (2.5 *[tex]10^{-3}[/tex])/(1.2)
=(2.08 *[tex]10^{-3}[/tex])
Now, Toung midulus =Y= Stress/ Strain
=(4.755 * [tex]10^{6}[/tex] )/(2.08 *[tex]10^{-3}[/tex])
=(2.286 *[tex]10^{9}[/tex]) N/m
(b)
Density of metal = 12 g/[tex]cm^{3}[/tex]
= 12*10³ kg/m
Speed of sound in the metal=
v=[tex]\sqrt{\frac{Y}{density} } = \sqrt{\frac{2.286*10^{9} }{12*10^{3} } }[/tex]
V=436.46 m/s