A car drives around a curve with radius 539 m at a speed of 32.0 m/s. The road is banked at 5.00°. The mass of the car is 1.40 × 10^3 kg. What is the frictional force on the car?

Respuesta :

Answer:

[tex]f_r = 150.47 N[/tex]

Explanation:

given,

r = 539 m

v = 32 m/s

road banked at = 5°

∑ F_x

[tex]\dfrac{mv^2}{r}= N sin \theta + f_r cos \theta[/tex]

∑ F_y = 0

[tex]0 = N cos \theta - f_r sin \theta - mg[/tex]

[tex]N = \dfrac{f_rsin \theta + mg}{cos \theta}[/tex]

[tex]\dfrac{mv^2}{r}= (\dfrac{f_rsin \theta + mg}{cos \theta})sin \theta + f_r cos \theta[/tex]

              = [tex]f_r sin \theta tan \theta + mg tan \theta + f_r cos \theta[/tex]

        [tex]f_r = \dfrac{\dfrac{mv^2}{r}- mg tan\theta}{sin\theta tan \theta + cos \theta}[/tex]

         [tex]f_r = \dfrac{\dfrac{1.4\times 10^3 \times 32^2}{539}- 1.4\times 10^{3}\times 9.8 \times 0.087}{0.087 \times 0.087 + 0.996}[/tex]

[tex]f_r = 150.47 N[/tex]

ACCESS MORE