Answer:
[tex]f_r = 150.47 N[/tex]
Explanation:
given,
r = 539 m
v = 32 m/s
road banked at = 5°
∑ F_x
[tex]\dfrac{mv^2}{r}= N sin \theta + f_r cos \theta[/tex]
∑ F_y = 0
[tex]0 = N cos \theta - f_r sin \theta - mg[/tex]
[tex]N = \dfrac{f_rsin \theta + mg}{cos \theta}[/tex]
[tex]\dfrac{mv^2}{r}= (\dfrac{f_rsin \theta + mg}{cos \theta})sin \theta + f_r cos \theta[/tex]
= [tex]f_r sin \theta tan \theta + mg tan \theta + f_r cos \theta[/tex]
[tex]f_r = \dfrac{\dfrac{mv^2}{r}- mg tan\theta}{sin\theta tan \theta + cos \theta}[/tex]
[tex]f_r = \dfrac{\dfrac{1.4\times 10^3 \times 32^2}{539}- 1.4\times 10^{3}\times 9.8 \times 0.087}{0.087 \times 0.087 + 0.996}[/tex]
[tex]f_r = 150.47 N[/tex]