Answer:
d' = d /2
Explanation:
Given that
Distance = d
Voltage =V
We know that energy in capacitor given as
[tex]U=\dfrac{1}{2}CV^2[/tex]
[tex]C=\dfrac{\varepsilon _oA}{d}[/tex]
[tex]U=\dfrac{1}{2}\times \dfrac{\varepsilon _oA}{d}\times V^2[/tex]
If energy become double U' = 2 U then d'
[tex]U'=\dfrac{1}{2}\times \dfrac{\varepsilon _oA}{d'}\times V^2[/tex]
[tex]2U=\dfrac{1}{2}\times \dfrac{\varepsilon _oA}{d'}\times V^2[/tex]
[tex]2\times \dfrac{1}{2}\times \dfrac{\varepsilon _oA}{d}\times V^2=\dfrac{1}{2}\times \dfrac{\varepsilon _oA}{d'}\times V^2[/tex]
2 d ' = d
d' = d /2
So the distance between plates will be half on initial distance.