Answer:
[tex]v = 15.56 m/s[/tex]
[tex]v = 56 km/h[/tex]
Explanation:
When coefficient of friction is approximately zero then we have
[tex]F_ncos\theta = mg[/tex]
[tex]F_n sin\theta = \frac{mv^2}{R}[/tex]
[tex]tan\theta = \frac{v^2}{Rg}[/tex]
here we know that
[tex]v = 40 km/h = 11.11 m/s[/tex]
R = 30 m
[tex]tan\theta = \frac{11.11^2}{30\times 9.81}[/tex]
[tex]\theta = 22.75 degree[/tex]
now when friction coefficient is 0.30 then we have
[tex]F_n cos\theta = mg + F_f sin\theta[/tex]
[tex]F_f cos\theta + F_n sin\theta = \frac{mv^2}{R}[/tex]
now we have
[tex]v = \sqrt{Rg(\frac{\mu + tan\theta}{1 - \mu tan\theta})}[/tex]
[tex]v = \sqrt{30(9.81)(\frac{0.30 + tan22.75}{1 - (0.30) tan22.75})}[/tex]
[tex]v = 15.56 m/s[/tex]
[tex]v = 56 km/h[/tex]