Respuesta :
Answer:1384 Hz
Explanation:
Given
wavelength[tex](\lambda )[/tex]=0.25 m
Temperature T[tex]=25^{\circ}[/tex]
at [tex]T=25^{\circ}[/tex] velocity of sound is 346 m/s
and we know
[tex]velocity=frequency\times \lambda [/tex]
[tex]v=f\times \lambda [/tex]
[tex]346=f\times 0.25[/tex]
f=1384 Hz
Answer:
Frequency, f = 1384 Hz
Explanation:
It is given that,
Wavelength of the sound wave, [tex]\lambda=0.25\ m[/tex]
Air temperature, T = 25° C
The speed of sound at a particular temperature is calculated as :
[tex]v=331.5+0.6\times T[/tex]
[tex]v=331.5+0.6\times 25[/tex]
v = 346.5 m/s
Let f is the frequency of the sound wave. It can be calculated as :
[tex]f=\dfrac{v}{\lambda}[/tex]
[tex]f=\dfrac{346.5\ m/s}{0.25\ m}[/tex]
f = 1386 Hz
or
f = 1384 Hz
So, the frequency of sound waves is 1384 Hz. Hence, this is the required solution.