Respuesta :

Answer:

The solutions are x=-2+3i and x=-2-3i

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} +4x+13=0[/tex]  

so

[tex]a=1\\b=4\\c=13[/tex]

substitute in the formula

[tex]x=\frac{-4(+/-)\sqrt{4^{2}-4(1)(13)}} {2(1)}[/tex]

[tex]x=\frac{-4(+/-)\sqrt{-36}} {2}[/tex]

Remember that

[tex]i^{2} =-1\\i=\sqrt{-1}[/tex]

substitute

[tex]x=\frac{-4(+/-)6i} {2}[/tex]

[tex]x_1=\frac{-4(+)6i} {2}=-2+3i[/tex]

[tex]x_2=\frac{-4(-)6i} {2}=-2-3i[/tex]

therefore

The solutions are x=-2+3i and x=-2-3i

ACCESS MORE