Respuesta :

Answer:

[tex]x - 5 = 8 \\ x = 13 \\ and \: x = 8 \\ so \: you \: have \: two \: solutions[/tex]

Answer:

The solutions of [tex]x^{2}=8-5 x[/tex] are  [tex]\frac{-5+\sqrt{57}}{2} \text { and } \frac{-5-\sqrt{57}}{2}[/tex]

Solution:

The equation is  

[tex]x^{2}=8-5 x[/tex]

[tex]\Rightarrow x^{2}+5 x-8=0[/tex]

We know that the quadratic formula to solve this,

x has two values which are [tex]= \frac{(-b+\sqrt{b^{2}-4 a c})}{2 a} \text { and } \frac{(-b-\sqrt{\left.b^{2}-4 a c\right)}}{2 a}[/tex]

Here a =1, b=5, c =-8

Substituting the values we get,

So, [tex]x=\frac{-5+\sqrt{5^{2}-4 \times 1 \times(-8)}}{2 \times 1}[/tex]

[tex]=\frac{-5+\sqrt{25-(-32)}}{2}=\frac{-5+\sqrt{25+32}}{2}=\frac{-5+\sqrt{57}}{2}[/tex]

Again [tex]x=\frac{-5-\sqrt{57}}{2}[/tex]

So the solution of [tex]x=\frac{-5+\sqrt{57}}{2} \text { and } \frac{-5-\sqrt{57}}{2}[/tex]

ACCESS MORE