Respuesta :
Answer:
[tex]x - 5 = 8 \\ x = 13 \\ and \: x = 8 \\ so \: you \: have \: two \: solutions[/tex]
Answer:
The solutions of [tex]x^{2}=8-5 x[/tex] are [tex]\frac{-5+\sqrt{57}}{2} \text { and } \frac{-5-\sqrt{57}}{2}[/tex]
Solution:
The equation is
[tex]x^{2}=8-5 x[/tex]
[tex]\Rightarrow x^{2}+5 x-8=0[/tex]
We know that the quadratic formula to solve this,
x has two values which are [tex]= \frac{(-b+\sqrt{b^{2}-4 a c})}{2 a} \text { and } \frac{(-b-\sqrt{\left.b^{2}-4 a c\right)}}{2 a}[/tex]
Here a =1, b=5, c =-8
Substituting the values we get,
So, [tex]x=\frac{-5+\sqrt{5^{2}-4 \times 1 \times(-8)}}{2 \times 1}[/tex]
[tex]=\frac{-5+\sqrt{25-(-32)}}{2}=\frac{-5+\sqrt{25+32}}{2}=\frac{-5+\sqrt{57}}{2}[/tex]
Again [tex]x=\frac{-5-\sqrt{57}}{2}[/tex]
So the solution of [tex]x=\frac{-5+\sqrt{57}}{2} \text { and } \frac{-5-\sqrt{57}}{2}[/tex]