Respuesta :
Answer:
[tex]{x}^{2} - x - 12 = (x + 3)(x - 4)[/tex]
[tex]{x}^{2} + 3x + 2 = (x + 2)(x + 1)[/tex]
[tex]{x}^{2} + 3x - 10 = (x + 5)(x - 2)[/tex]
Step-by-step explanation:
F [First terms] - Multiply the first terms in each set of parentheses FARTHEST TO THE LEFT
O [Outside terms] - Multiply the first term in the first set of parentheses FARTHEST TO THE LEFT by the last term in the second set of parentheses FARTHEST TO THE RIGHT
I [Inside terms] - Multiply the last term in the first set of parentheses FARTHEST TO THE RIGHT by the first term in the second set of parentheses FARTHEST TO THE LEFT
L [Last terms] - Multiply the last terms in each set of parentheses FARTHEST TO THE RIGHT
[tex]{x}^{2} - x - 12 = {x}^{2} - 4x + 3x - 12[/tex]
[tex]{x}^{2} + 3x + 2 = {x}^{2} + x + 2x + 2[/tex]
[tex]{x}^{2} + 3x - 10 = {x}^{2} - 2x + 5x - 10[/tex]
I am joyous to assist you anytime.
Answer:
x²+3x-10,
x²+3x+2,
x²-x-12
Step-by-step explanation:
1) (x+5)(x-2)
x²-2x+5x-10
x²+3x-10
2) (x+2)(x+1)
x²+x+2x+2
x²+3x+2
3) (x+3)(x-4)
x²-4x+3x-12
x²-x-12