Answer and explanation:
Given : Let A = {1, 2, 3, 4, 5}, let B = {1,4,5,7,8,9}, and let C = {2, 4, 6, 7,9}.
To find : Determine each of the following,
a) [tex](A\cap B)\cap C[/tex]
b) [tex](A\cup B)\cap (A\cup C)[/tex]
c) [tex]A - (B\cup C)[/tex]
d) [tex](A-C) (C-A)[/tex]
Solution :
The union of two sets is a new set that contains all of the elements that are in at least one of the two sets.
The intersection of two sets is a new set that contains all of the elements that are in both sets.
a) [tex](A\cap B)\cap C[/tex]
[tex]A\cap B=\{1,4,5\}[/tex]
Then, [tex](A\cap B)\cap C=\{4\}[/tex]
b) [tex](A\cup B)\cap (A\cup C)[/tex]
[tex]A\cup B=\{1,2,3,4,5,7,8,9\}[/tex]
[tex]A\cup C=\{1,2,3,4,5,7,9\}[/tex]
[tex](A\cup B)\cap (A\cup C)=\{1,2,3,4,5,7,9\}[/tex]
c) [tex]A - (B\cup C)[/tex]
[tex]B\cup C=\{1,2,4,5,6,7,8,9\}[/tex]
[tex]A - (B\cup C)=\{3\}[/tex]
d) [tex](A-C) (C-A)[/tex]
[tex]A-C=\{1,3,5\}[/tex]
[tex]C-A=\{6,7,9\}[/tex]
[tex](A-C) (C-A)=\{1,3,5\}\times\{6,7,9\}[/tex]
[tex](A-C) (C-A)=\{(1,6),(1,7),(1,9),(3,6),(3,7),(3,9),(5,6),(5,7),(5,9)\}[/tex]