Respuesta :

Answer:

[tex]2*sin(x)+y*cos(x)-cos(y)=C_1[/tex]

Step-by-step explanation:

Let:

[tex]P(x,y)=2*cos(x)-y*sin(x)[/tex]

[tex]Q(x,y)=cos(x)+sin(y)[/tex]

This is an exact differential equation because:

[tex]\frac{\partial P(x,y)}{\partial y} =-sin(x)[/tex]

[tex]\frac{\partial Q(x,y)}{\partial x}=-sin(x)[/tex]

With this in mind let's define f(x,y) such that:

[tex]\frac{\partial f(x,y)}{\partial x}=P(x,y)[/tex]

and

[tex]\frac{\partial f(x,y)}{\partial y}=Q(x,y)[/tex]

So, the solution will be given by f(x,y)=C1, C1=arbitrary constant

Now, integrate [tex]\frac{\partial f(x,y)}{\partial x}[/tex] with respect to x in order to find f(x,y)

[tex]f(x,y)=\int\  2*cos(x)-y*sin(x)\, dx =2*sin(x)+y*cos(x)+g(y)[/tex]

where g(y) is an arbitrary function of y

Let's differentiate f(x,y) with respect to y in order to find g(y):

[tex]\frac{\partial f(x,y)}{\partial y}=\frac{\partial }{\partial y} (2*sin(x)+y*cos(x)+g(y))=cos(x)+\frac{dg(y)}{dy}[/tex]

Now, let's replace the previous result into [tex]\frac{\partial f(x,y)}{\partial y}=Q(x,y)[/tex] :

[tex]cos(x)+\frac{dg(y)}{dy}=cos(x)+sin(y)[/tex]

Solving for [tex]\frac{dg(y)}{dy}[/tex]

[tex]\frac{dg(y)}{dy}=sin(y)[/tex]

Integrating both sides with respect to y:

[tex]g(y)=\int\ sin(y)  \, dy =-cos(y)[/tex]

Replacing this result into f(x,y)

[tex]f(x,y)=2*sin(x)+y*cos(x)-cos(y)[/tex]

Finally the solution is f(x,y)=C1 :

[tex]2*sin(x)+y*cos(x)-cos(y)=C_1[/tex]

ACCESS MORE