Answer:
[tex]F=4.7\times10^{-18}N[/tex]
[tex]\frac{F}{W}=525702635794[/tex]
Explanation:
The acceleration experimented by the electron can be calculated using the formula [tex]v_f^2=v_i^2+2ad[/tex], so we have:
[tex]a=\frac{v_f^2-v_i^2}{2d}[/tex]
The magnitude of of the force exerted on the electron can be then obtained using Newton's 2nd Law F=ma.
Putting all together we have:
[tex]F=ma=\frac{m(v_f^2-v_i^2)}{2d}[/tex]
And using our values (and that 4.2cm are 0.042m):
[tex]F=\frac{(9.11\times10^{-31}Kg)((7.6\times10^5m/s)^2-(3.8\times10^5m/s)^2)}{2(0.042m)}=4.7\times10^{-18}N[/tex]
Then we compare this force with the weight of the electron:
[tex]\frac{F}{W}=\frac{\frac{m(v_f^2-v_i^2)}{2d}}{mg}=\frac{(v_f^2-v_i^2)}{2dg}=\frac{(7.6\times10^5m/s)^2-(3.8\times10^5m/s)^2}{2(0.042m)(9.81m/s^2)}=525702635794[/tex]
So this force is 525702635794 times larger than the weight of the electron.