Respuesta :
Answer:
y = [tex]\frac{-7}{4}e^{\frac{-1}{2}x}+ \frac{11}{4}e^{\frac{3}{2}x}[/tex]
Step-by-step explanation:
Given:
4y" – 4y' – 3y = 0, y(0) = 1, y'(0) = 5
Now,
The auxiliary equation will be given as:
4m² - 4m - 3 = 0
or
4m² + 2m - 6m - 3 = 0
or
2m (2 + 1) - 3 (2m + 1) = 0
or
( 2m - 3 ) × ( 2m + 1 ) = 0
therefore,
m = [tex]\frac{\textup{3}}{\textup{2}}[/tex] and m = [tex]\frac{\textup{-1}}{\textup{2}}[/tex]
thus,
the general equation comes as:
y = [tex]C_1e^{mx}+ C_2e^{mx}[/tex]
or
y = [tex]C_1e^{\frac{-1}{2}x}+ C_2e^{\frac{3}{2}x}[/tex]
now,
at y(0) = 1
therefore,
1 = [tex]C_1e^{\frac{-1}{2}\times0}+ C_2e^{\frac{3}{2}\times0}[/tex]
or
C₁ + C₂ = 1 .............(1)
and,
y' = [tex]\frac{-1}{2}C_1e^{\frac{-1}{2}x}+ \frac{3}{2}C_2e^{\frac{3}{2}x}[/tex]
also,
y'(0) = 5
thus,
5 = [tex]\frac{-1}{2}C_1e^{\frac{-1}{2}\times0}+ \frac{3}{2}C_2e^{\frac{3}{2}\times0}[/tex]
or
3C₂ - C₁ = 10 ...........(2)
on adding 1 and 2, we get
C₁ + C₂ = 1
+ (- C₁ + 3C₂) = 10
===============
4C₂ = 11
or
C₂ = [tex]\frac{\textup{11}}{\textup{4}}[/tex]
thus,
C₁ + C₂ = 1
or
C₁ + [tex]\frac{\textup{11}}{\textup{4}}[/tex] = 1
or
C₁ = [tex]\frac{\textup{-7}}{\textup{4}}[/tex]
Hence,
The solution is y = [tex]C_1e^{mx}+ C_2e^{mx}[/tex]
on substituting the values,
y = [tex]\frac{-7}{4}e^{\frac{-1}{2}x}+ \frac{11}{4}e^{\frac{3}{2}x}[/tex]
Solving the characteristic equation and applying the initial conditions, the solution of the IVP is:
[tex]y(t) = -1.75e^{-0.5t} + 2.75e^{1.5t}[/tex]
The IVP is given by:
[tex]4y^{\prime\prime} - 4y^{\prime} - 3y = 0[/tex]
The characteristic equation is:
[tex]4r^2 - 4r - 3 = 0[/tex]
Which is a quadratic equation with coefficients [tex]a = 4, b = -4, c = -3[/tex], and thus:
[tex]\Delta = b^2 - 4ac = (-4)^2 - 4(4)(-3) = 64[/tex]
[tex]x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{4 - 8}{8} = -0.5[/tex]
[tex]x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{4 + 8}{8} = 1.5[/tex]
Thus, the solution is in the format:
[tex]y(t) = ae^{-0.5t} + be^{1.5t}[/tex]
Applying the initial conditions:
[tex]y(0) = 1 \rightarrow a + b = 1[/tex]
[tex]y^{\prime}(0) = 5 \rightarrow -0.5a + 1.5b = 5[/tex]
From the first equation, [tex]a = 1 - b[/tex], and replacing in the second:
[tex]-0.5a + 1.5b = 5[/tex]
[tex]-0.5 + 0.5b + 1.5b = 5[/tex]
[tex]2b = 5.5[/tex]
[tex]b = \frac{5.5}{2}[/tex]
[tex]b = 2.75[/tex]
[tex]a = 1 - b = 1 - 2.75 = -1.75[/tex]
Then, the solution to the IVP is:
[tex]y(t) = -1.75e^{-0.5t} + 2.75e^{1.5t}[/tex]
A similar problem is given at https://brainly.com/question/13260929