Answer: 0.9084
Step-by-step explanation:
Given : The actual capacity of a randomly selected tank has a distribution that is approximately Normal with [tex]\mu=15[/tex]
[tex]\sigma=0.15[/tex]
Sample size : n=4
Using [tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex] , for x= 14.75 , we have
[tex]z=\dfrac{14.75-15}{\dfrac{0.15}{\sqrt{4}}}=-3.33333[/tex]
For x= 15.10 , [tex]z=\dfrac{15.10-15}{\dfrac{0.15}{\sqrt{4}}}=1.33333[/tex]
Using standard normal z-value table,
P-value [tex]= P(-3.3333<z<1.33333)=[/tex]
[tex]P(z<1.33)-P(z<-3.33)=0.9087882-0.0004291=0.9083591\approx0.9084[/tex]
Hence, the probability that all four will hold between 14.75 and 15.10 gallons of gas = 0.9084